Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204698546> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3204698546 endingPage "234" @default.
- W3204698546 startingPage "223" @default.
- W3204698546 abstract "The Stock Market Prediction (SMP) has been a fascinating and challenging problem. The involvement of noisy, non-linear, and sparse features and poor feature selection degrades the prediction accuracies. The improved feature quality with an enhanced feature selection mechanism can increase the accuracy of prediction. This research article focuses on the Exploratory Data Analysis (EDA) of the Nifty50 index data of the National Stock Exchange (NSE). It proposes an enhanced hybrid feature engineering mechanism to extract the most relevant features that significantly impact SMP accuracy. This work employs Ensemble Regression Models viz. Random Forest Regression (RFR) and Extreme Gradient Boost Regression (XGBR) to predict the market trend. From the results we conclude that the proposed models achieve an improved R- squared values of 0.97 using RFR and 0.98 using XGBR, respectively." @default.
- W3204698546 created "2021-10-11" @default.
- W3204698546 creator A5001265667 @default.
- W3204698546 creator A5027554717 @default.
- W3204698546 creator A5090827264 @default.
- W3204698546 date "2021-01-01" @default.
- W3204698546 modified "2023-10-05" @default.
- W3204698546 title "Predicting the Stock Market Trend: An Ensemble Approach Using Impactful Exploratory Data Analysis" @default.
- W3204698546 cites W1990532738 @default.
- W3204698546 cites W2018128208 @default.
- W3204698546 cites W2026494183 @default.
- W3204698546 cites W2039392793 @default.
- W3204698546 cites W2039465280 @default.
- W3204698546 cites W2067465375 @default.
- W3204698546 cites W2107641306 @default.
- W3204698546 cites W2233997611 @default.
- W3204698546 cites W2483443934 @default.
- W3204698546 cites W2772784825 @default.
- W3204698546 cites W2912087029 @default.
- W3204698546 cites W3013734981 @default.
- W3204698546 cites W3040299034 @default.
- W3204698546 cites W3102476541 @default.
- W3204698546 cites W4205330297 @default.
- W3204698546 doi "https://doi.org/10.1007/978-3-030-88378-2_18" @default.
- W3204698546 hasPublicationYear "2021" @default.
- W3204698546 type Work @default.
- W3204698546 sameAs 3204698546 @default.
- W3204698546 citedByCount "2" @default.
- W3204698546 countsByYear W32046985462022 @default.
- W3204698546 crossrefType "book-chapter" @default.
- W3204698546 hasAuthorship W3204698546A5001265667 @default.
- W3204698546 hasAuthorship W3204698546A5027554717 @default.
- W3204698546 hasAuthorship W3204698546A5090827264 @default.
- W3204698546 hasConcept C105795698 @default.
- W3204698546 hasConcept C108583219 @default.
- W3204698546 hasConcept C119857082 @default.
- W3204698546 hasConcept C124101348 @default.
- W3204698546 hasConcept C148483581 @default.
- W3204698546 hasConcept C149782125 @default.
- W3204698546 hasConcept C154945302 @default.
- W3204698546 hasConcept C166957645 @default.
- W3204698546 hasConcept C169258074 @default.
- W3204698546 hasConcept C205649164 @default.
- W3204698546 hasConcept C2522767166 @default.
- W3204698546 hasConcept C2778827112 @default.
- W3204698546 hasConcept C2779343474 @default.
- W3204698546 hasConcept C2780299701 @default.
- W3204698546 hasConcept C3018260909 @default.
- W3204698546 hasConcept C33923547 @default.
- W3204698546 hasConcept C41008148 @default.
- W3204698546 hasConcept C83546350 @default.
- W3204698546 hasConceptScore W3204698546C105795698 @default.
- W3204698546 hasConceptScore W3204698546C108583219 @default.
- W3204698546 hasConceptScore W3204698546C119857082 @default.
- W3204698546 hasConceptScore W3204698546C124101348 @default.
- W3204698546 hasConceptScore W3204698546C148483581 @default.
- W3204698546 hasConceptScore W3204698546C149782125 @default.
- W3204698546 hasConceptScore W3204698546C154945302 @default.
- W3204698546 hasConceptScore W3204698546C166957645 @default.
- W3204698546 hasConceptScore W3204698546C169258074 @default.
- W3204698546 hasConceptScore W3204698546C205649164 @default.
- W3204698546 hasConceptScore W3204698546C2522767166 @default.
- W3204698546 hasConceptScore W3204698546C2778827112 @default.
- W3204698546 hasConceptScore W3204698546C2779343474 @default.
- W3204698546 hasConceptScore W3204698546C2780299701 @default.
- W3204698546 hasConceptScore W3204698546C3018260909 @default.
- W3204698546 hasConceptScore W3204698546C33923547 @default.
- W3204698546 hasConceptScore W3204698546C41008148 @default.
- W3204698546 hasConceptScore W3204698546C83546350 @default.
- W3204698546 hasLocation W32046985461 @default.
- W3204698546 hasOpenAccess W3204698546 @default.
- W3204698546 hasPrimaryLocation W32046985461 @default.
- W3204698546 hasRelatedWork W2911455822 @default.
- W3204698546 hasRelatedWork W2968586400 @default.
- W3204698546 hasRelatedWork W3017044142 @default.
- W3204698546 hasRelatedWork W3036202055 @default.
- W3204698546 hasRelatedWork W3200179079 @default.
- W3204698546 hasRelatedWork W4225360065 @default.
- W3204698546 hasRelatedWork W4293525103 @default.
- W3204698546 hasRelatedWork W4308191010 @default.
- W3204698546 hasRelatedWork W4323021782 @default.
- W3204698546 hasRelatedWork W4361733514 @default.
- W3204698546 isParatext "false" @default.
- W3204698546 isRetracted "false" @default.
- W3204698546 magId "3204698546" @default.
- W3204698546 workType "book-chapter" @default.