Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204702198> ?p ?o ?g. }
- W3204702198 endingPage "107201" @default.
- W3204702198 startingPage "107201" @default.
- W3204702198 abstract "The accurate estimation of water productivity (WP) and plant production becomes imperative in planning and managing irrigation practices. Light intensity and CO2 concentration are among the most important determinants of growth and WP of crops. In this study, the adaptive neuro-fuzzy inference system (ANFIS) was used to model the changes in growth parameters, stomatal properties, and WP of lettuce due to various scenarios of light intensity and CO2 concentration. The lettuce plants were exposed to four levels of light intensity [75, 150, 300, and 600 µmol m−2 s−1 Photosynthetic Photon Flux Density (PPFD)] and CO2 concentration (400, 800, 1200, and 1600 ppm). The results showed that growth parameters such as fresh weight, dry weight, and leaf area improved by increasing the PPFD and CO2 concentration from 75 to 300 µmol m−2 s−1 and 400–1200 ppm, respectively. Maximum fresh weight was recorded at 300 µmol m−2 s−1 PPFD and 1600 ppm CO2 concentration while the highest dry weight was obtained at 600 µmol m−2 s−1 PPFD and 1600 ppm CO2 concentration. Stomatal pore width and length decreased by increasing PPFD and CO2 concentration. Moreover, evapotranspiration increased when plants were exposed to higher PPFDs and CO2 concentrations. ANFIS predicted all growth parameters, stomatal properties, and WP with acceptable performance (R2 > 0.99, RMSE < 0.8 ×10−2). The findings provide agricultural engineers with an artificial intelligence-based model to predict the WP and production of lettuce by having the light intensity and CO2 concentration." @default.
- W3204702198 created "2021-10-11" @default.
- W3204702198 creator A5039284321 @default.
- W3204702198 creator A5053496668 @default.
- W3204702198 creator A5055662173 @default.
- W3204702198 creator A5057499377 @default.
- W3204702198 creator A5061341184 @default.
- W3204702198 creator A5073276703 @default.
- W3204702198 creator A5075805986 @default.
- W3204702198 creator A5079429451 @default.
- W3204702198 date "2021-12-01" @default.
- W3204702198 modified "2023-10-12" @default.
- W3204702198 title "Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations" @default.
- W3204702198 cites W1737837635 @default.
- W3204702198 cites W1965955819 @default.
- W3204702198 cites W1969460362 @default.
- W3204702198 cites W1969980386 @default.
- W3204702198 cites W1974102622 @default.
- W3204702198 cites W1985052984 @default.
- W3204702198 cites W1989638365 @default.
- W3204702198 cites W2001379895 @default.
- W3204702198 cites W2004347829 @default.
- W3204702198 cites W2005545386 @default.
- W3204702198 cites W2012993235 @default.
- W3204702198 cites W2018769012 @default.
- W3204702198 cites W2019207321 @default.
- W3204702198 cites W2021432630 @default.
- W3204702198 cites W2023491306 @default.
- W3204702198 cites W2023546021 @default.
- W3204702198 cites W2036096630 @default.
- W3204702198 cites W2044615059 @default.
- W3204702198 cites W2055824250 @default.
- W3204702198 cites W2088083100 @default.
- W3204702198 cites W2092252604 @default.
- W3204702198 cites W2097735268 @default.
- W3204702198 cites W2105050540 @default.
- W3204702198 cites W2106425190 @default.
- W3204702198 cites W2112766585 @default.
- W3204702198 cites W2123894420 @default.
- W3204702198 cites W2134859165 @default.
- W3204702198 cites W2141043581 @default.
- W3204702198 cites W2142283539 @default.
- W3204702198 cites W2144893055 @default.
- W3204702198 cites W2164090981 @default.
- W3204702198 cites W2165799466 @default.
- W3204702198 cites W2277059720 @default.
- W3204702198 cites W2323316069 @default.
- W3204702198 cites W2343272329 @default.
- W3204702198 cites W2507973046 @default.
- W3204702198 cites W2510940913 @default.
- W3204702198 cites W2742643441 @default.
- W3204702198 cites W2748859796 @default.
- W3204702198 cites W2800958052 @default.
- W3204702198 cites W2809680870 @default.
- W3204702198 cites W2917573805 @default.
- W3204702198 cites W2965880448 @default.
- W3204702198 cites W2998710992 @default.
- W3204702198 cites W3000395087 @default.
- W3204702198 cites W3006740980 @default.
- W3204702198 cites W3030465477 @default.
- W3204702198 cites W3081372266 @default.
- W3204702198 cites W3115155034 @default.
- W3204702198 cites W3118627696 @default.
- W3204702198 cites W3118719491 @default.
- W3204702198 cites W3122609511 @default.
- W3204702198 cites W3177325235 @default.
- W3204702198 doi "https://doi.org/10.1016/j.agwat.2021.107201" @default.
- W3204702198 hasPublicationYear "2021" @default.
- W3204702198 type Work @default.
- W3204702198 sameAs 3204702198 @default.
- W3204702198 citedByCount "13" @default.
- W3204702198 countsByYear W32047021982022 @default.
- W3204702198 countsByYear W32047021982023 @default.
- W3204702198 crossrefType "journal-article" @default.
- W3204702198 hasAuthorship W3204702198A5039284321 @default.
- W3204702198 hasAuthorship W3204702198A5053496668 @default.
- W3204702198 hasAuthorship W3204702198A5055662173 @default.
- W3204702198 hasAuthorship W3204702198A5057499377 @default.
- W3204702198 hasAuthorship W3204702198A5061341184 @default.
- W3204702198 hasAuthorship W3204702198A5073276703 @default.
- W3204702198 hasAuthorship W3204702198A5075805986 @default.
- W3204702198 hasAuthorship W3204702198A5079429451 @default.
- W3204702198 hasBestOaLocation W32047021981 @default.
- W3204702198 hasConcept C120665830 @default.
- W3204702198 hasConcept C121332964 @default.
- W3204702198 hasConcept C138885662 @default.
- W3204702198 hasConcept C139719470 @default.
- W3204702198 hasConcept C144027150 @default.
- W3204702198 hasConcept C150668497 @default.
- W3204702198 hasConcept C162324750 @default.
- W3204702198 hasConcept C176783924 @default.
- W3204702198 hasConcept C185592680 @default.
- W3204702198 hasConcept C186108316 @default.
- W3204702198 hasConcept C18903297 @default.
- W3204702198 hasConcept C195975749 @default.
- W3204702198 hasConcept C204983608 @default.
- W3204702198 hasConcept C2988105877 @default.
- W3204702198 hasConcept C3020368824 @default.