Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204707855> ?p ?o ?g. }
- W3204707855 endingPage "896" @default.
- W3204707855 startingPage "883" @default.
- W3204707855 abstract "The past decade has seen marked advancement in the sophisticated technologies available for focal therapy in cancer. Among the emerging bioeffects of these therapies is modulation of extracellular vesicles (EVs) within the tumor microenvironment. Radiotherapy, therapeutic ultrasound and photodynamic therapy can each differentially alter the concentration and/or profile of tumor-associated EVs. In some cases, these bioeffects exert secondary impacts on surrounding cancer or immune cells. The ability of oncolytic therapies to modulate EVs holds important implications for liquid biopsy and biomarker discovery in cancer. Given their recognition as ‘self’ by the immune system, EVs offer superior biocompatibility and low immunogenicity. EVs are gaining traction as nanocarriers for drug delivery in the settings of therapeutic ultrasound and photodynamic therapy. Minimally invasive focal therapies for nonviral oncolysis are a cornerstone of cancer therapeutics. Our ability to optimally deploy oncolytic therapies and identify synergistic combination approaches requires a deeper understanding of elicited biological responses. Extracellular vesicles (EV), which orchestrate a variety of pathophysiological processes and have a critical role in the evolution of primary and disseminated tumors, are now known to be potently modulated by oncolytic focal therapies, such as radiotherapy, photodynamic therapy (PDT), and therapeutic ultrasound (TUS). In this review, we summarize the diverse impacts of the aforementioned therapeutic modalities on EV biology, and highlight the most recent advances in EV-based drug delivery systems leveraging these modalities. Minimally invasive focal therapies for nonviral oncolysis are a cornerstone of cancer therapeutics. Our ability to optimally deploy oncolytic therapies and identify synergistic combination approaches requires a deeper understanding of elicited biological responses. Extracellular vesicles (EV), which orchestrate a variety of pathophysiological processes and have a critical role in the evolution of primary and disseminated tumors, are now known to be potently modulated by oncolytic focal therapies, such as radiotherapy, photodynamic therapy (PDT), and therapeutic ultrasound (TUS). In this review, we summarize the diverse impacts of the aforementioned therapeutic modalities on EV biology, and highlight the most recent advances in EV-based drug delivery systems leveraging these modalities. subduing the immunological response against harmful stimuli, such as cancer cells. formation, expansion, and collapse of microbubbles in an ultrasound field. specific class of EV that is generated within endosomes called multivesicular bodies. Multivesicular bodies bud inward to form intraluminal vesicles that can contain cytosolic contents or proteins incorporated into the membrane of the intraluminal vesicle. Exosomes are released into the extracellular space after fusion with the plasma membrane. particles with a lipid bilayer that are secreted by cells into the extracellular space. originating from a device located outside the patient’s body. cellular damage resulting from exposure to DNA-damaging agents and subsequent attempts to repair the damaged DNA. temperatures above normal physiological temperature, but not high enough to be immediately lethal to most cells. Hyperthermia is generally defined as 40–47°C, but temperatures above 43°C are more lethal than those below 43°C. analysis of a blood sample to identify circulating cancer biomarkers that can aid in clinical diagnosis or prognosis of disease. microscale particles that encapsulate a gas with a shell commonly made of lipids, albumin, or polymers. Microbubbles can expand and contract in response to ultrasound waves. short, single-stranded, noncoding RNA molecules that regulate gene expression by binding to complementary mRNA and triggering translational repression or mRNA degradation. nanoscale particles comprising encapsulated liquid perfluorocarbon emulsions. The emulsions in nanodroplets commonly undergo phase transition to a gas core during therapeutic ultrasound treatment. relating to the development and survival of tumors. cellular damage resulting from exposure to, and accumulation of, free radicals beyond the ROS-clearing capacity of a cell. promoting the immunological response against harmful stimuli, such as cancer cells." @default.
- W3204707855 created "2021-10-11" @default.
- W3204707855 creator A5001898925 @default.
- W3204707855 creator A5049415387 @default.
- W3204707855 creator A5053168739 @default.
- W3204707855 creator A5077201398 @default.
- W3204707855 date "2021-11-01" @default.
- W3204707855 modified "2023-10-16" @default.
- W3204707855 title "Functional intersections between extracellular vesicles and oncolytic therapies" @default.
- W3204707855 cites W1571387405 @default.
- W3204707855 cites W1762620449 @default.
- W3204707855 cites W1859655790 @default.
- W3204707855 cites W1966236903 @default.
- W3204707855 cites W1975447309 @default.
- W3204707855 cites W1991570175 @default.
- W3204707855 cites W1994878006 @default.
- W3204707855 cites W2000562577 @default.
- W3204707855 cites W2012658614 @default.
- W3204707855 cites W2013933536 @default.
- W3204707855 cites W2024886650 @default.
- W3204707855 cites W2028035236 @default.
- W3204707855 cites W2066624075 @default.
- W3204707855 cites W2068126292 @default.
- W3204707855 cites W2073514222 @default.
- W3204707855 cites W2076806011 @default.
- W3204707855 cites W2091868933 @default.
- W3204707855 cites W2107008239 @default.
- W3204707855 cites W2115526420 @default.
- W3204707855 cites W2116842394 @default.
- W3204707855 cites W2121725913 @default.
- W3204707855 cites W2125691719 @default.
- W3204707855 cites W2129248052 @default.
- W3204707855 cites W2130105071 @default.
- W3204707855 cites W2133739473 @default.
- W3204707855 cites W2144269285 @default.
- W3204707855 cites W2158553515 @default.
- W3204707855 cites W2162725847 @default.
- W3204707855 cites W2176918495 @default.
- W3204707855 cites W2178935826 @default.
- W3204707855 cites W2213890440 @default.
- W3204707855 cites W2223591983 @default.
- W3204707855 cites W2301624354 @default.
- W3204707855 cites W2309177734 @default.
- W3204707855 cites W2344300142 @default.
- W3204707855 cites W2346103630 @default.
- W3204707855 cites W2533480443 @default.
- W3204707855 cites W2536322725 @default.
- W3204707855 cites W2544530174 @default.
- W3204707855 cites W2577912340 @default.
- W3204707855 cites W2737533542 @default.
- W3204707855 cites W2754805552 @default.
- W3204707855 cites W2765904302 @default.
- W3204707855 cites W2790656413 @default.
- W3204707855 cites W2791079811 @default.
- W3204707855 cites W2803997637 @default.
- W3204707855 cites W2807330954 @default.
- W3204707855 cites W2807798312 @default.
- W3204707855 cites W2809230197 @default.
- W3204707855 cites W2827777376 @default.
- W3204707855 cites W2887648876 @default.
- W3204707855 cites W2900756811 @default.
- W3204707855 cites W2902752984 @default.
- W3204707855 cites W2904438365 @default.
- W3204707855 cites W2904705904 @default.
- W3204707855 cites W2913398462 @default.
- W3204707855 cites W2917347255 @default.
- W3204707855 cites W2919064031 @default.
- W3204707855 cites W2939460128 @default.
- W3204707855 cites W2943785883 @default.
- W3204707855 cites W2957302450 @default.
- W3204707855 cites W2963173758 @default.
- W3204707855 cites W2969354046 @default.
- W3204707855 cites W2973851168 @default.
- W3204707855 cites W2978325726 @default.
- W3204707855 cites W2981193841 @default.
- W3204707855 cites W2982091811 @default.
- W3204707855 cites W2984857742 @default.
- W3204707855 cites W2985644183 @default.
- W3204707855 cites W3002211353 @default.
- W3204707855 cites W3014379441 @default.
- W3204707855 cites W3015983644 @default.
- W3204707855 cites W3018381211 @default.
- W3204707855 cites W3020057517 @default.
- W3204707855 cites W3022324472 @default.
- W3204707855 cites W3035774327 @default.
- W3204707855 cites W3040036203 @default.
- W3204707855 cites W3093881791 @default.
- W3204707855 cites W3121078316 @default.
- W3204707855 cites W3134763185 @default.
- W3204707855 cites W31468973 @default.
- W3204707855 doi "https://doi.org/10.1016/j.tips.2021.09.001" @default.
- W3204707855 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8526420" @default.
- W3204707855 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34598797" @default.
- W3204707855 hasPublicationYear "2021" @default.
- W3204707855 type Work @default.
- W3204707855 sameAs 3204707855 @default.
- W3204707855 citedByCount "5" @default.
- W3204707855 countsByYear W32047078552022 @default.