Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204708235> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3204708235 endingPage "2159" @default.
- W3204708235 startingPage "2133" @default.
- W3204708235 abstract "Abstract For a Coxeter system and a representation $V$ of this Coxeter system, Soergel defined a category which is now called the category of Soergel bimodules and proved that this gives a categorification of the Hecke algebra when $V$ is reflection faithful. Elias and Williamson defined another category when $V$ is not reflection faithful and proved that this category is equivalent to the category of Soergel bimodules when $V$ is reflection faithful. Moreover, they proved the categorification theorem for their category with fewer assumptions on $V$ . In this paper, we give a bimodule description of the Elias–Williamson category and re-prove the categorification theorem." @default.
- W3204708235 created "2021-10-11" @default.
- W3204708235 creator A5077507065 @default.
- W3204708235 date "2021-09-30" @default.
- W3204708235 modified "2023-09-26" @default.
- W3204708235 title "A bimodule description of the Hecke category" @default.
- W3204708235 cites W1716699693 @default.
- W3204708235 cites W1987865648 @default.
- W3204708235 cites W2001155216 @default.
- W3204708235 cites W2011223765 @default.
- W3204708235 cites W2028032591 @default.
- W3204708235 cites W2035880869 @default.
- W3204708235 cites W2620927369 @default.
- W3204708235 cites W2963968969 @default.
- W3204708235 cites W2964148875 @default.
- W3204708235 cites W3037472760 @default.
- W3204708235 doi "https://doi.org/10.1112/s0010437x21007466" @default.
- W3204708235 hasPublicationYear "2021" @default.
- W3204708235 type Work @default.
- W3204708235 sameAs 3204708235 @default.
- W3204708235 citedByCount "5" @default.
- W3204708235 countsByYear W32047082352022 @default.
- W3204708235 countsByYear W32047082352023 @default.
- W3204708235 crossrefType "journal-article" @default.
- W3204708235 hasAuthorship W3204708235A5077507065 @default.
- W3204708235 hasConcept C1219285 @default.
- W3204708235 hasConcept C135658033 @default.
- W3204708235 hasConcept C136119220 @default.
- W3204708235 hasConcept C143669375 @default.
- W3204708235 hasConcept C199360897 @default.
- W3204708235 hasConcept C202444582 @default.
- W3204708235 hasConcept C2781280181 @default.
- W3204708235 hasConcept C33923547 @default.
- W3204708235 hasConcept C41008148 @default.
- W3204708235 hasConcept C65682993 @default.
- W3204708235 hasConceptScore W3204708235C1219285 @default.
- W3204708235 hasConceptScore W3204708235C135658033 @default.
- W3204708235 hasConceptScore W3204708235C136119220 @default.
- W3204708235 hasConceptScore W3204708235C143669375 @default.
- W3204708235 hasConceptScore W3204708235C199360897 @default.
- W3204708235 hasConceptScore W3204708235C202444582 @default.
- W3204708235 hasConceptScore W3204708235C2781280181 @default.
- W3204708235 hasConceptScore W3204708235C33923547 @default.
- W3204708235 hasConceptScore W3204708235C41008148 @default.
- W3204708235 hasConceptScore W3204708235C65682993 @default.
- W3204708235 hasIssue "10" @default.
- W3204708235 hasLocation W32047082351 @default.
- W3204708235 hasOpenAccess W3204708235 @default.
- W3204708235 hasPrimaryLocation W32047082351 @default.
- W3204708235 hasRelatedWork W2063829785 @default.
- W3204708235 hasRelatedWork W2576866533 @default.
- W3204708235 hasRelatedWork W2909707072 @default.
- W3204708235 hasRelatedWork W2950898687 @default.
- W3204708235 hasRelatedWork W2962848624 @default.
- W3204708235 hasRelatedWork W2968856884 @default.
- W3204708235 hasRelatedWork W3016225584 @default.
- W3204708235 hasRelatedWork W3204708235 @default.
- W3204708235 hasRelatedWork W4300690800 @default.
- W3204708235 hasRelatedWork W4384615746 @default.
- W3204708235 hasVolume "157" @default.
- W3204708235 isParatext "false" @default.
- W3204708235 isRetracted "false" @default.
- W3204708235 magId "3204708235" @default.
- W3204708235 workType "article" @default.