Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204708932> ?p ?o ?g. }
- W3204708932 endingPage "2681" @default.
- W3204708932 startingPage "2670" @default.
- W3204708932 abstract "In this work, we have developed a neural network (NN) model that can analyze enrichment from depleted (0.2%) to low enriched uranium (4.5%) when UO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> waste with very low radioactivity was contained in a 1-L Marinelli beaker, even when the measurement time is as short as 10 s using a low-resolution detector. The average count rate was about 3800 cps. Measurement of uranium enrichment is necessary for quantitative analysis of uranium radioactivity for disposal of uranium waste. Previously studied uranium enrichment methods (infinite thickness (IT) method, peak ratio (PR) method, and relative-efficiency (RE) method) are difficult to use for field measurement due to many limitations of the algorithms. Among existing methods, the RE method is accurate but requires a long measurement time; there is also a limitation in which a high-resolution detector is essential. In this work, we proposed a model to predict uranium enrichment using a low-resolution detector and an artificial NN model. Furthermore, we validated the results of the NN models using an explainable AI algorithm and principal component analysis (PCA). When the measurement time was less than 60 s, the existing method failed to analyze uranium enrichment, but the proposed model can predict enrichment of uranium within 5% of relative error when 5 g of uranium powder was mixed with various waste (ash, soil, and concrete)." @default.
- W3204708932 created "2021-10-11" @default.
- W3204708932 creator A5003145618 @default.
- W3204708932 creator A5009637351 @default.
- W3204708932 creator A5049825250 @default.
- W3204708932 creator A5059332739 @default.
- W3204708932 creator A5077271962 @default.
- W3204708932 creator A5084041816 @default.
- W3204708932 date "2021-11-01" @default.
- W3204708932 modified "2023-10-16" @default.
- W3204708932 title "Development of Neural Network Model With Explainable AI for Measuring Uranium Enrichment" @default.
- W3204708932 cites W1551291783 @default.
- W3204708932 cites W17486081 @default.
- W3204708932 cites W1787224781 @default.
- W3204708932 cites W1885087049 @default.
- W3204708932 cites W1991627576 @default.
- W3204708932 cites W2008273110 @default.
- W3204708932 cites W2023083839 @default.
- W3204708932 cites W2027407435 @default.
- W3204708932 cites W2033419011 @default.
- W3204708932 cites W2049060396 @default.
- W3204708932 cites W2061970613 @default.
- W3204708932 cites W2065741610 @default.
- W3204708932 cites W2072566913 @default.
- W3204708932 cites W2079084508 @default.
- W3204708932 cites W2282821441 @default.
- W3204708932 cites W2288927317 @default.
- W3204708932 cites W2566490198 @default.
- W3204708932 cites W2606960612 @default.
- W3204708932 cites W2807934512 @default.
- W3204708932 cites W2912182926 @default.
- W3204708932 cites W2921987506 @default.
- W3204708932 cites W2954657463 @default.
- W3204708932 cites W2962858109 @default.
- W3204708932 cites W2977384434 @default.
- W3204708932 cites W2987277903 @default.
- W3204708932 cites W2995523160 @default.
- W3204708932 cites W4300337452 @default.
- W3204708932 doi "https://doi.org/10.1109/tns.2021.3116090" @default.
- W3204708932 hasPublicationYear "2021" @default.
- W3204708932 type Work @default.
- W3204708932 sameAs 3204708932 @default.
- W3204708932 citedByCount "6" @default.
- W3204708932 countsByYear W32047089322022 @default.
- W3204708932 countsByYear W32047089322023 @default.
- W3204708932 crossrefType "journal-article" @default.
- W3204708932 hasAuthorship W3204708932A5003145618 @default.
- W3204708932 hasAuthorship W3204708932A5009637351 @default.
- W3204708932 hasAuthorship W3204708932A5049825250 @default.
- W3204708932 hasAuthorship W3204708932A5059332739 @default.
- W3204708932 hasAuthorship W3204708932A5077271962 @default.
- W3204708932 hasAuthorship W3204708932A5084041816 @default.
- W3204708932 hasConcept C121332964 @default.
- W3204708932 hasConcept C127066815 @default.
- W3204708932 hasConcept C13965031 @default.
- W3204708932 hasConcept C150199151 @default.
- W3204708932 hasConcept C153454851 @default.
- W3204708932 hasConcept C154945302 @default.
- W3204708932 hasConcept C185544564 @default.
- W3204708932 hasConcept C185592680 @default.
- W3204708932 hasConcept C27438332 @default.
- W3204708932 hasConcept C41008148 @default.
- W3204708932 hasConcept C50644808 @default.
- W3204708932 hasConcept C555451288 @default.
- W3204708932 hasConcept C76155785 @default.
- W3204708932 hasConcept C89690796 @default.
- W3204708932 hasConcept C94915269 @default.
- W3204708932 hasConceptScore W3204708932C121332964 @default.
- W3204708932 hasConceptScore W3204708932C127066815 @default.
- W3204708932 hasConceptScore W3204708932C13965031 @default.
- W3204708932 hasConceptScore W3204708932C150199151 @default.
- W3204708932 hasConceptScore W3204708932C153454851 @default.
- W3204708932 hasConceptScore W3204708932C154945302 @default.
- W3204708932 hasConceptScore W3204708932C185544564 @default.
- W3204708932 hasConceptScore W3204708932C185592680 @default.
- W3204708932 hasConceptScore W3204708932C27438332 @default.
- W3204708932 hasConceptScore W3204708932C41008148 @default.
- W3204708932 hasConceptScore W3204708932C50644808 @default.
- W3204708932 hasConceptScore W3204708932C555451288 @default.
- W3204708932 hasConceptScore W3204708932C76155785 @default.
- W3204708932 hasConceptScore W3204708932C89690796 @default.
- W3204708932 hasConceptScore W3204708932C94915269 @default.
- W3204708932 hasIssue "11" @default.
- W3204708932 hasLocation W32047089321 @default.
- W3204708932 hasOpenAccess W3204708932 @default.
- W3204708932 hasPrimaryLocation W32047089321 @default.
- W3204708932 hasRelatedWork W2028977510 @default.
- W3204708932 hasRelatedWork W2099732240 @default.
- W3204708932 hasRelatedWork W2119899812 @default.
- W3204708932 hasRelatedWork W2158004126 @default.
- W3204708932 hasRelatedWork W2324166659 @default.
- W3204708932 hasRelatedWork W2348295821 @default.
- W3204708932 hasRelatedWork W2559816412 @default.
- W3204708932 hasRelatedWork W4237760506 @default.
- W3204708932 hasRelatedWork W69202079 @default.
- W3204708932 hasRelatedWork W2093674364 @default.
- W3204708932 hasVolume "68" @default.
- W3204708932 isParatext "false" @default.