Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204734758> ?p ?o ?g. }
- W3204734758 endingPage "17" @default.
- W3204734758 startingPage "1" @default.
- W3204734758 abstract "The remarkable advancements in biotechnology and public healthcare infrastructures have led to a momentous production of critical and sensitive healthcare data. By applying intelligent data analysis techniques, many interesting patterns are identified for the early and onset detection and prevention of several fatal diseases. Diabetes mellitus is an extremely life-threatening disease because it contributes to other lethal diseases, i.e., heart, kidney, and nerve damage. In this paper, a machine learning based approach has been proposed for the classification, early-stage identification, and prediction of diabetes. Furthermore, it also presents an IoT-based hypothetical diabetes monitoring system for a healthy and affected person to monitor his blood glucose (BG) level. For diabetes classification, three different classifiers have been employed, i.e., random forest (RF), multilayer perceptron (MLP), and logistic regression (LR). For predictive analysis, we have employed long short-term memory (LSTM), moving averages (MA), and linear regression (LR). For experimental evaluation, a benchmark PIMA Indian Diabetes dataset is used. During the analysis, it is observed that MLP outperforms other classifiers with 86.08% of accuracy and LSTM improves the significant prediction with 87.26% accuracy of diabetes. Moreover, a comparative analysis of the proposed approach is also performed with existing state-of-the-art techniques, demonstrating the adaptability of the proposed approach in many public healthcare applications." @default.
- W3204734758 created "2021-10-11" @default.
- W3204734758 creator A5003363519 @default.
- W3204734758 creator A5033406444 @default.
- W3204734758 creator A5060107287 @default.
- W3204734758 creator A5061026288 @default.
- W3204734758 creator A5070150180 @default.
- W3204734758 creator A5073999917 @default.
- W3204734758 date "2021-09-29" @default.
- W3204734758 modified "2023-10-06" @default.
- W3204734758 title "Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications" @default.
- W3204734758 cites W1974052141 @default.
- W3204734758 cites W2026445864 @default.
- W3204734758 cites W2297433331 @default.
- W3204734758 cites W2500079061 @default.
- W3204734758 cites W2552292843 @default.
- W3204734758 cites W2617995709 @default.
- W3204734758 cites W2735907094 @default.
- W3204734758 cites W2743114258 @default.
- W3204734758 cites W2750794793 @default.
- W3204734758 cites W2760481920 @default.
- W3204734758 cites W2762232816 @default.
- W3204734758 cites W2779565479 @default.
- W3204734758 cites W2793192375 @default.
- W3204734758 cites W2793983546 @default.
- W3204734758 cites W2794607078 @default.
- W3204734758 cites W2799718158 @default.
- W3204734758 cites W2800104575 @default.
- W3204734758 cites W2807027008 @default.
- W3204734758 cites W2810149880 @default.
- W3204734758 cites W2843242420 @default.
- W3204734758 cites W2891920841 @default.
- W3204734758 cites W2895533920 @default.
- W3204734758 cites W2913260502 @default.
- W3204734758 cites W2913376044 @default.
- W3204734758 cites W2923738821 @default.
- W3204734758 cites W2937078062 @default.
- W3204734758 cites W2938231240 @default.
- W3204734758 cites W2940821831 @default.
- W3204734758 cites W2954194962 @default.
- W3204734758 cites W2958235752 @default.
- W3204734758 cites W2971117641 @default.
- W3204734758 cites W2979405624 @default.
- W3204734758 cites W2982326781 @default.
- W3204734758 cites W2989696458 @default.
- W3204734758 cites W2989986170 @default.
- W3204734758 cites W2997606798 @default.
- W3204734758 cites W2999437364 @default.
- W3204734758 cites W2999545566 @default.
- W3204734758 cites W3000690578 @default.
- W3204734758 cites W3001855876 @default.
- W3204734758 cites W3001857267 @default.
- W3204734758 cites W3006607088 @default.
- W3204734758 cites W3022525025 @default.
- W3204734758 cites W3044806259 @default.
- W3204734758 cites W3046554438 @default.
- W3204734758 cites W3047094350 @default.
- W3204734758 cites W3048779574 @default.
- W3204734758 cites W3080566490 @default.
- W3204734758 cites W3082503974 @default.
- W3204734758 cites W3083158240 @default.
- W3204734758 cites W3091648495 @default.
- W3204734758 cites W3111353854 @default.
- W3204734758 cites W3113769112 @default.
- W3204734758 cites W3119358510 @default.
- W3204734758 cites W3120814856 @default.
- W3204734758 cites W3126647681 @default.
- W3204734758 cites W4240986128 @default.
- W3204734758 cites W4252352007 @default.
- W3204734758 cites W4256231856 @default.
- W3204734758 cites W983511299 @default.
- W3204734758 doi "https://doi.org/10.1155/2021/9930985" @default.
- W3204734758 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8500744" @default.
- W3204734758 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34631003" @default.
- W3204734758 hasPublicationYear "2021" @default.
- W3204734758 type Work @default.
- W3204734758 sameAs 3204734758 @default.
- W3204734758 citedByCount "49" @default.
- W3204734758 countsByYear W32047347582022 @default.
- W3204734758 countsByYear W32047347582023 @default.
- W3204734758 crossrefType "journal-article" @default.
- W3204734758 hasAuthorship W3204734758A5003363519 @default.
- W3204734758 hasAuthorship W3204734758A5033406444 @default.
- W3204734758 hasAuthorship W3204734758A5060107287 @default.
- W3204734758 hasAuthorship W3204734758A5061026288 @default.
- W3204734758 hasAuthorship W3204734758A5070150180 @default.
- W3204734758 hasAuthorship W3204734758A5073999917 @default.
- W3204734758 hasBestOaLocation W32047347581 @default.
- W3204734758 hasConcept C110083411 @default.
- W3204734758 hasConcept C116834253 @default.
- W3204734758 hasConcept C119857082 @default.
- W3204734758 hasConcept C124101348 @default.
- W3204734758 hasConcept C13280743 @default.
- W3204734758 hasConcept C134018914 @default.
- W3204734758 hasConcept C151956035 @default.
- W3204734758 hasConcept C154945302 @default.
- W3204734758 hasConcept C160735492 @default.
- W3204734758 hasConcept C162324750 @default.