Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204735211> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3204735211 endingPage "102326" @default.
- W3204735211 startingPage "102326" @default.
- W3204735211 abstract "Accurate forecasts of photovoltaic power generation (PVPG) are essential to optimize operations between energy supply and demand. Recently, the propagation of sensors and smart meters has produced an enormous volume of data, which supports the data-driven models for PVPG forecasting. Although emerging deep learning (DL) models, such as the long short-term memory (LSTM), based on historical data, have provided effective solutions for PVPG forecasting with great successes, these models utilize offline learning. As a result, DL models cannot take advantage of the opportunity to learn from newly-arrived data, and are unable to handle concept drift caused by installing extra PV units and unforeseen PV unit failures. Consequently, to improve day-ahead PVPG forecasting accuracy, as well as eliminate the impacts of concept drift, this paper proposes an adaptive LSTM (AD-LSTM), which is a DL framework that can not only acquire general knowledge from historical data, but also dynamically learn specific knowledge from newly-arrived data. A two-phase adaptive learning strategy (TP-ALS) is integrated into AD-LSTM, and a sliding window (SDWIN) algorithm is proposed, to detect concept drift in PV systems. Multiple datasets from PV systems are utilized to assess the feasibility and effectiveness of the proposed approaches. The developed AD-LSTM model demonstrates greater forecasting capability than the conventional offline LSTM model, particularly in the presence of concept drift. The forecasting skill of AD-LSTM can be improved up to 73.11%. Additionally, the proposed AD-LSTM model also achieves superior performance in terms of day-ahead PVPG forecasting for individual days and multiple days to other reference models in the literature." @default.
- W3204735211 created "2021-10-11" @default.
- W3204735211 creator A5076928257 @default.
- W3204735211 creator A5090508999 @default.
- W3204735211 date "2022-08-01" @default.
- W3204735211 modified "2023-09-25" @default.
- W3204735211 title "An adaptive deep learning framework for day-ahead forecasting of photovoltaic power generation" @default.
- W3204735211 cites W2067019903 @default.
- W3204735211 cites W2085723914 @default.
- W3204735211 cites W2088786192 @default.
- W3204735211 cites W2131774270 @default.
- W3204735211 cites W2296521892 @default.
- W3204735211 cites W2315426463 @default.
- W3204735211 cites W2470699557 @default.
- W3204735211 cites W2743310439 @default.
- W3204735211 cites W2899959398 @default.
- W3204735211 cites W2900680591 @default.
- W3204735211 cites W2906239552 @default.
- W3204735211 cites W2912623183 @default.
- W3204735211 cites W2960560113 @default.
- W3204735211 cites W2980706627 @default.
- W3204735211 cites W3006087551 @default.
- W3204735211 cites W3014822860 @default.
- W3204735211 cites W3105031020 @default.
- W3204735211 cites W3110147505 @default.
- W3204735211 cites W3127890494 @default.
- W3204735211 cites W3133901049 @default.
- W3204735211 cites W3134570487 @default.
- W3204735211 cites W3190354123 @default.
- W3204735211 cites W3197588786 @default.
- W3204735211 cites W4200516166 @default.
- W3204735211 doi "https://doi.org/10.1016/j.seta.2022.102326" @default.
- W3204735211 hasPublicationYear "2022" @default.
- W3204735211 type Work @default.
- W3204735211 sameAs 3204735211 @default.
- W3204735211 citedByCount "2" @default.
- W3204735211 countsByYear W32047352112022 @default.
- W3204735211 crossrefType "journal-article" @default.
- W3204735211 hasAuthorship W3204735211A5076928257 @default.
- W3204735211 hasAuthorship W3204735211A5090508999 @default.
- W3204735211 hasBestOaLocation W32047352111 @default.
- W3204735211 hasConcept C108583219 @default.
- W3204735211 hasConcept C119599485 @default.
- W3204735211 hasConcept C119857082 @default.
- W3204735211 hasConcept C127413603 @default.
- W3204735211 hasConcept C154945302 @default.
- W3204735211 hasConcept C41008148 @default.
- W3204735211 hasConcept C41291067 @default.
- W3204735211 hasConcept C60777511 @default.
- W3204735211 hasConcept C89198739 @default.
- W3204735211 hasConceptScore W3204735211C108583219 @default.
- W3204735211 hasConceptScore W3204735211C119599485 @default.
- W3204735211 hasConceptScore W3204735211C119857082 @default.
- W3204735211 hasConceptScore W3204735211C127413603 @default.
- W3204735211 hasConceptScore W3204735211C154945302 @default.
- W3204735211 hasConceptScore W3204735211C41008148 @default.
- W3204735211 hasConceptScore W3204735211C41291067 @default.
- W3204735211 hasConceptScore W3204735211C60777511 @default.
- W3204735211 hasConceptScore W3204735211C89198739 @default.
- W3204735211 hasLocation W32047352111 @default.
- W3204735211 hasLocation W32047352112 @default.
- W3204735211 hasLocation W32047352113 @default.
- W3204735211 hasOpenAccess W3204735211 @default.
- W3204735211 hasPrimaryLocation W32047352111 @default.
- W3204735211 hasRelatedWork W2795261237 @default.
- W3204735211 hasRelatedWork W3014300295 @default.
- W3204735211 hasRelatedWork W3164822677 @default.
- W3204735211 hasRelatedWork W4223943233 @default.
- W3204735211 hasRelatedWork W4225161397 @default.
- W3204735211 hasRelatedWork W4312200629 @default.
- W3204735211 hasRelatedWork W4360585206 @default.
- W3204735211 hasRelatedWork W4364306694 @default.
- W3204735211 hasRelatedWork W4380075502 @default.
- W3204735211 hasRelatedWork W4380086463 @default.
- W3204735211 hasVolume "52" @default.
- W3204735211 isParatext "false" @default.
- W3204735211 isRetracted "false" @default.
- W3204735211 magId "3204735211" @default.
- W3204735211 workType "article" @default.