Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204758309> ?p ?o ?g. }
- W3204758309 abstract "ABSTRACT The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these two parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use the observed CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based Bayesian likelihood-free inference approaches. We tested the suitability of two evolutionary models: a standard Wright-Fisher model and a chemostat growth model. We evaluated two likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models we show that NPE has several advantages over ABC-SMC and that a Wright-Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in yeast as 10 −4.7 -10 −4 per cell division, and a selection coefficient of 0.04 - 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our estimates using barcode lineage tracking and pairwise fitness assays. Our results are consistent with a high beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining their outsized importance in rapid adaptive evolution. More generally, our study demonstrates the utility of novel simulation-based likelihood-free inference methods for inferring the rates and effects of evolutionary processes from empirical data." @default.
- W3204758309 created "2021-10-11" @default.
- W3204758309 creator A5004372835 @default.
- W3204758309 creator A5049174192 @default.
- W3204758309 creator A5052223624 @default.
- W3204758309 date "2021-10-01" @default.
- W3204758309 modified "2023-09-23" @default.
- W3204758309 title "Simulation-based inference of evolutionary parameters from adaptation dynamics using neural networks" @default.
- W3204758309 cites W1762867794 @default.
- W3204758309 cites W1793259860 @default.
- W3204758309 cites W1866561374 @default.
- W3204758309 cites W1932263073 @default.
- W3204758309 cites W1973099219 @default.
- W3204758309 cites W1973175445 @default.
- W3204758309 cites W1985561503 @default.
- W3204758309 cites W1988459773 @default.
- W3204758309 cites W1992722091 @default.
- W3204758309 cites W2002727366 @default.
- W3204758309 cites W2005268861 @default.
- W3204758309 cites W2006566295 @default.
- W3204758309 cites W2016666153 @default.
- W3204758309 cites W2026502449 @default.
- W3204758309 cites W2030023311 @default.
- W3204758309 cites W2032616735 @default.
- W3204758309 cites W2034123794 @default.
- W3204758309 cites W2034197594 @default.
- W3204758309 cites W2034795216 @default.
- W3204758309 cites W2038945865 @default.
- W3204758309 cites W2042482078 @default.
- W3204758309 cites W2043257897 @default.
- W3204758309 cites W2045415444 @default.
- W3204758309 cites W2045973738 @default.
- W3204758309 cites W2051571475 @default.
- W3204758309 cites W2059300459 @default.
- W3204758309 cites W2064152536 @default.
- W3204758309 cites W2068632812 @default.
- W3204758309 cites W2072290177 @default.
- W3204758309 cites W2074299224 @default.
- W3204758309 cites W2084924279 @default.
- W3204758309 cites W2092768543 @default.
- W3204758309 cites W2096160674 @default.
- W3204758309 cites W2100163378 @default.
- W3204758309 cites W2107738680 @default.
- W3204758309 cites W2108053853 @default.
- W3204758309 cites W2108646201 @default.
- W3204758309 cites W2113477606 @default.
- W3204758309 cites W2115382138 @default.
- W3204758309 cites W2116416291 @default.
- W3204758309 cites W2118744932 @default.
- W3204758309 cites W2119595780 @default.
- W3204758309 cites W2140881640 @default.
- W3204758309 cites W2144274181 @default.
- W3204758309 cites W2144624159 @default.
- W3204758309 cites W2145406188 @default.
- W3204758309 cites W2147581876 @default.
- W3204758309 cites W2148099207 @default.
- W3204758309 cites W2151729750 @default.
- W3204758309 cites W2153473918 @default.
- W3204758309 cites W2156448287 @default.
- W3204758309 cites W2156984627 @default.
- W3204758309 cites W2157268589 @default.
- W3204758309 cites W2165974744 @default.
- W3204758309 cites W2166560456 @default.
- W3204758309 cites W2166575253 @default.
- W3204758309 cites W2167030304 @default.
- W3204758309 cites W2170299286 @default.
- W3204758309 cites W2195849364 @default.
- W3204758309 cites W2471185287 @default.
- W3204758309 cites W2518349977 @default.
- W3204758309 cites W2528865292 @default.
- W3204758309 cites W2587686129 @default.
- W3204758309 cites W2694546118 @default.
- W3204758309 cites W2749390592 @default.
- W3204758309 cites W2753138806 @default.
- W3204758309 cites W2755736976 @default.
- W3204758309 cites W2782627618 @default.
- W3204758309 cites W2783564415 @default.
- W3204758309 cites W2785784674 @default.
- W3204758309 cites W2788593837 @default.
- W3204758309 cites W2886319458 @default.
- W3204758309 cites W2888308403 @default.
- W3204758309 cites W2933222148 @default.
- W3204758309 cites W2943079448 @default.
- W3204758309 cites W2949631852 @default.
- W3204758309 cites W2950327064 @default.
- W3204758309 cites W2951578895 @default.
- W3204758309 cites W2951729905 @default.
- W3204758309 cites W2959696098 @default.
- W3204758309 cites W2963284230 @default.
- W3204758309 cites W2973350525 @default.
- W3204758309 cites W2985687430 @default.
- W3204758309 cites W2995029783 @default.
- W3204758309 cites W3023338115 @default.
- W3204758309 cites W3031514878 @default.
- W3204758309 cites W3035576460 @default.
- W3204758309 cites W3042508348 @default.
- W3204758309 cites W3081344392 @default.
- W3204758309 cites W3087344693 @default.
- W3204758309 cites W3093825731 @default.
- W3204758309 cites W3103145119 @default.