Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204758977> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3204758977 abstract "Machine Learning (ML) can substantially improve the efficiency and effectiveness of organizations and is widely used for different purposes within Software Engineering. However, the selection and implementation of ML techniques rely almost exclusively on accuracy criteria. Thus, for organizations wishing to realize the benefits of ML investments, this narrow approach ignores crucial considerations around the anticipated costs of the ML activities across the ML lifecycle, while failing to account for the benefits that are likely to accrue from the proposed activity. We present findings for an approach that addresses this gap by enhancing the accuracy criterion with return on investment (ROI) considerations. Specifically, we analyze the performance of the two state-of-the-art ML techniques: Random Forest and Bidirectional Encoder Representations from Transformers (BERT), based on accuracy and ROI for two publicly available data sets. Specifically, we compare decision-making on requirements dependency extraction (i) exclusively based on accuracy and (ii) extended to include ROI analysis. As a result, we propose recommendations for selecting ML classification techniques based on the degree of training data used. Our findings indicate that considering ROI as additional criteria can drastically influence ML selection when compared to decisions based on accuracy as the sole criterion" @default.
- W3204758977 created "2021-10-11" @default.
- W3204758977 creator A5063455671 @default.
- W3204758977 creator A5078138347 @default.
- W3204758977 creator A5089918468 @default.
- W3204758977 date "2021-09-28" @default.
- W3204758977 modified "2023-09-27" @default.
- W3204758977 title "How Much Data Analytics is Enough? The ROI of Machine Learning Classification and its Application to Requirements Dependency Classification." @default.
- W3204758977 cites W1121979346 @default.
- W3204758977 cites W1551890820 @default.
- W3204758977 cites W2033626294 @default.
- W3204758977 cites W2099738604 @default.
- W3204758977 cites W2196910858 @default.
- W3204758977 cites W2516729557 @default.
- W3204758977 cites W2767318500 @default.
- W3204758977 cites W2963341956 @default.
- W3204758977 cites W2993561384 @default.
- W3204758977 cites W3092190869 @default.
- W3204758977 cites W3093772117 @default.
- W3204758977 cites W3098598077 @default.
- W3204758977 hasPublicationYear "2021" @default.
- W3204758977 type Work @default.
- W3204758977 sameAs 3204758977 @default.
- W3204758977 citedByCount "0" @default.
- W3204758977 crossrefType "posted-content" @default.
- W3204758977 hasAuthorship W3204758977A5063455671 @default.
- W3204758977 hasAuthorship W3204758977A5078138347 @default.
- W3204758977 hasAuthorship W3204758977A5089918468 @default.
- W3204758977 hasConcept C119857082 @default.
- W3204758977 hasConcept C124101348 @default.
- W3204758977 hasConcept C139719470 @default.
- W3204758977 hasConcept C154945302 @default.
- W3204758977 hasConcept C162324750 @default.
- W3204758977 hasConcept C169258074 @default.
- W3204758977 hasConcept C169549615 @default.
- W3204758977 hasConcept C19609008 @default.
- W3204758977 hasConcept C19768560 @default.
- W3204758977 hasConcept C199360897 @default.
- W3204758977 hasConcept C2777904410 @default.
- W3204758977 hasConcept C2778348673 @default.
- W3204758977 hasConcept C41008148 @default.
- W3204758977 hasConcept C79158427 @default.
- W3204758977 hasConcept C81917197 @default.
- W3204758977 hasConceptScore W3204758977C119857082 @default.
- W3204758977 hasConceptScore W3204758977C124101348 @default.
- W3204758977 hasConceptScore W3204758977C139719470 @default.
- W3204758977 hasConceptScore W3204758977C154945302 @default.
- W3204758977 hasConceptScore W3204758977C162324750 @default.
- W3204758977 hasConceptScore W3204758977C169258074 @default.
- W3204758977 hasConceptScore W3204758977C169549615 @default.
- W3204758977 hasConceptScore W3204758977C19609008 @default.
- W3204758977 hasConceptScore W3204758977C19768560 @default.
- W3204758977 hasConceptScore W3204758977C199360897 @default.
- W3204758977 hasConceptScore W3204758977C2777904410 @default.
- W3204758977 hasConceptScore W3204758977C2778348673 @default.
- W3204758977 hasConceptScore W3204758977C41008148 @default.
- W3204758977 hasConceptScore W3204758977C79158427 @default.
- W3204758977 hasConceptScore W3204758977C81917197 @default.
- W3204758977 hasLocation W32047589771 @default.
- W3204758977 hasOpenAccess W3204758977 @default.
- W3204758977 hasPrimaryLocation W32047589771 @default.
- W3204758977 hasRelatedWork W1551262177 @default.
- W3204758977 hasRelatedWork W1969319425 @default.
- W3204758977 hasRelatedWork W1984800215 @default.
- W3204758977 hasRelatedWork W1989127053 @default.
- W3204758977 hasRelatedWork W1991056984 @default.
- W3204758977 hasRelatedWork W2007830001 @default.
- W3204758977 hasRelatedWork W2067049162 @default.
- W3204758977 hasRelatedWork W2181958198 @default.
- W3204758977 hasRelatedWork W2345782172 @default.
- W3204758977 hasRelatedWork W2601793253 @default.
- W3204758977 hasRelatedWork W2792112803 @default.
- W3204758977 hasRelatedWork W2803727098 @default.
- W3204758977 hasRelatedWork W2955445454 @default.
- W3204758977 hasRelatedWork W3084911943 @default.
- W3204758977 hasRelatedWork W3119045628 @default.
- W3204758977 hasRelatedWork W31722624 @default.
- W3204758977 hasRelatedWork W3174460840 @default.
- W3204758977 hasRelatedWork W3206149782 @default.
- W3204758977 hasRelatedWork W3208243843 @default.
- W3204758977 hasRelatedWork W2184831092 @default.
- W3204758977 isParatext "false" @default.
- W3204758977 isRetracted "false" @default.
- W3204758977 magId "3204758977" @default.
- W3204758977 workType "article" @default.