Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204759238> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3204759238 abstract "Digitization of histology images and the advent of new computational methods, like deep learning, have helped the automatic grading of colorectal adenocarcinoma cancer (CRA). Present automated CRA grading methods, however, usually use tiny image patches and thus fail to integrate the entire tissue micro-architecture for grading purposes. To tackle these challenges, we propose to use a statistical network analysis method to describe the complex structure of the tissue micro-environment by modelling nuclei and their connections as a network. We show that by analyzing only the interactions between the cells in a network, we can extract highly discriminative statistical features for CRA grading. Unlike other deep learning or convolutional graph-based approaches, our method is highly scalable (can be used for cell networks consist of millions of nodes), completely explainable, and computationally inexpensive. We create cell networks on a broad CRC histology image dataset, experiment with our method, and report state-of-the-art performance for the prediction of three-class CRA grading." @default.
- W3204759238 created "2021-10-11" @default.
- W3204759238 creator A5059185353 @default.
- W3204759238 creator A5069179055 @default.
- W3204759238 creator A5079630611 @default.
- W3204759238 date "2021-01-01" @default.
- W3204759238 modified "2023-09-26" @default.
- W3204759238 title "Cells are Actors: Social Network Analysis with Classical ML for SOTA Histology Image Classification" @default.
- W3204759238 cites W1983922466 @default.
- W3204759238 cites W2026417691 @default.
- W3204759238 cites W2194775991 @default.
- W3204759238 cites W2580767461 @default.
- W3204759238 cites W2604687579 @default.
- W3204759238 cites W2889739347 @default.
- W3204759238 cites W2919115771 @default.
- W3204759238 cites W2921092847 @default.
- W3204759238 cites W2923812673 @default.
- W3204759238 cites W2963618258 @default.
- W3204759238 cites W2964317032 @default.
- W3204759238 cites W2988856610 @default.
- W3204759238 cites W2998141119 @default.
- W3204759238 cites W3004713990 @default.
- W3204759238 cites W3016553397 @default.
- W3204759238 cites W3040784645 @default.
- W3204759238 cites W3089090082 @default.
- W3204759238 cites W3089265920 @default.
- W3204759238 cites W3122263858 @default.
- W3204759238 cites W4235019172 @default.
- W3204759238 doi "https://doi.org/10.1007/978-3-030-87237-3_28" @default.
- W3204759238 hasPublicationYear "2021" @default.
- W3204759238 type Work @default.
- W3204759238 sameAs 3204759238 @default.
- W3204759238 citedByCount "1" @default.
- W3204759238 countsByYear W32047592382021 @default.
- W3204759238 crossrefType "book-chapter" @default.
- W3204759238 hasAuthorship W3204759238A5059185353 @default.
- W3204759238 hasAuthorship W3204759238A5069179055 @default.
- W3204759238 hasAuthorship W3204759238A5079630611 @default.
- W3204759238 hasBestOaLocation W32047592382 @default.
- W3204759238 hasConcept C108583219 @default.
- W3204759238 hasConcept C119857082 @default.
- W3204759238 hasConcept C127413603 @default.
- W3204759238 hasConcept C147176958 @default.
- W3204759238 hasConcept C153180895 @default.
- W3204759238 hasConcept C154945302 @default.
- W3204759238 hasConcept C2777286243 @default.
- W3204759238 hasConcept C2779308522 @default.
- W3204759238 hasConcept C31972630 @default.
- W3204759238 hasConcept C41008148 @default.
- W3204759238 hasConcept C81363708 @default.
- W3204759238 hasConcept C97931131 @default.
- W3204759238 hasConceptScore W3204759238C108583219 @default.
- W3204759238 hasConceptScore W3204759238C119857082 @default.
- W3204759238 hasConceptScore W3204759238C127413603 @default.
- W3204759238 hasConceptScore W3204759238C147176958 @default.
- W3204759238 hasConceptScore W3204759238C153180895 @default.
- W3204759238 hasConceptScore W3204759238C154945302 @default.
- W3204759238 hasConceptScore W3204759238C2777286243 @default.
- W3204759238 hasConceptScore W3204759238C2779308522 @default.
- W3204759238 hasConceptScore W3204759238C31972630 @default.
- W3204759238 hasConceptScore W3204759238C41008148 @default.
- W3204759238 hasConceptScore W3204759238C81363708 @default.
- W3204759238 hasConceptScore W3204759238C97931131 @default.
- W3204759238 hasLocation W32047592381 @default.
- W3204759238 hasLocation W32047592382 @default.
- W3204759238 hasOpenAccess W3204759238 @default.
- W3204759238 hasPrimaryLocation W32047592381 @default.
- W3204759238 hasRelatedWork W10944326 @default.
- W3204759238 hasRelatedWork W12634471 @default.
- W3204759238 hasRelatedWork W12793662 @default.
- W3204759238 hasRelatedWork W15119441 @default.
- W3204759238 hasRelatedWork W4972971 @default.
- W3204759238 hasRelatedWork W5743998 @default.
- W3204759238 hasRelatedWork W6918093 @default.
- W3204759238 hasRelatedWork W7303821 @default.
- W3204759238 hasRelatedWork W9190101 @default.
- W3204759238 hasRelatedWork W9952751 @default.
- W3204759238 isParatext "false" @default.
- W3204759238 isRetracted "false" @default.
- W3204759238 magId "3204759238" @default.
- W3204759238 workType "book-chapter" @default.