Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204764705> ?p ?o ?g. }
- W3204764705 abstract "We report that close to a Mott transition there is an emergence of large thermal noise (${S}_{mathrm{th}}$) which occurs concomitantly with large correlated flicker noise ($frac{1}{f}$ noise) with significant non-Gaussian content. This was observed in films of ${text{NdNiO}}_{3}$ (thickness 15 nm) grown on crystalline ${text{SrTiO}}_{3}$ substrates with different crystallographic orientations that show a hysteretic transition from a high temperature metallic phase to a low temperature insulating phase in the temperature range 160 to 211 K depending on the substrate orientation and the heating and cooling cycle. The thermal noise, which is distinct from the flicker noise, deviates from the canonical Johnson-Nyquist value of $4{k}_{B}TR$ as measured through the ratio $ensuremath{zeta}(T)(ensuremath{equiv}frac{{S}_{mathrm{th}}(T)}{4{k}_{B}TR})$. The ratio $ensuremath{zeta}$ reaches a maximum value of ${ensuremath{zeta}}_{M}$ at a temperature ${T}^{*}$ that is close to but distinct from the metal-insulator transition (MIT) temperature ${T}_{mathrm{MI}}$. In all the films near ${T}^{*}$, the scaled thermal noise maxima ${ensuremath{zeta}}_{M}ensuremath{gg}1$. The films were found to be largely strain relaxed with residual in-plane and out-of-plane strain as measured by x-ray reciprocal space mapping. It has been observed that the ratio $frac{{T}^{*}}{{T}_{mathrm{MI}}}$ as well as ${ensuremath{zeta}}_{M}$ have a close dependence on the in-plane-strain in the film. The enhanced thermal noise that occurs along with large correlated flicker noise both arise from slow kinetics of relaxation as established from temperature dependence of the correlation time ($ensuremath{tau}$) that gets significantly larger in the temperature range around ${T}^{*}$, reaching a maxima at $T={T}^{*}$. It has been proposed that the existence of large noise (both thermal and flicker noise) owes its origin to electronic phase separation (EPS) that exists near the MIT. A physical model has been suggested that EPS near MIT temperature can give rise to a sparse phase of nanometric small pockets of metallic phases (nanopuddles) that are surrounded by and embedded within the minority insulating phase. The nanopuddles act as a source of charge fluctuations and are coupled weakly to the majority metallic phase by tunneling through the layer of the minority insulating phase. Such isolated metallic nanopuddles can be Coulomb charged if the charging energy ${E}_{C}ensuremath{ge}{k}_{B}T$ and can have slow relaxation of fluctuations acting as a source of large noise. It has been argued that the size distribution of the nanopuddles, their average size $ensuremath{langle}densuremath{rangle}$, as well as the temperature dependence of their number density ${N}_{d}$ can determine the temperature ${T}^{*}$." @default.
- W3204764705 created "2021-10-11" @default.
- W3204764705 creator A5007778096 @default.
- W3204764705 creator A5072948773 @default.
- W3204764705 creator A5077464990 @default.
- W3204764705 creator A5083440483 @default.
- W3204764705 date "2021-10-04" @default.
- W3204764705 modified "2023-10-18" @default.
- W3204764705 title "Emergence of large thermal noise close to a temperature-driven metal-insulator transition" @default.
- W3204764705 cites W1968778486 @default.
- W3204764705 cites W1972068641 @default.
- W3204764705 cites W1976182721 @default.
- W3204764705 cites W1979371102 @default.
- W3204764705 cites W1983453994 @default.
- W3204764705 cites W1986531297 @default.
- W3204764705 cites W1986962322 @default.
- W3204764705 cites W1988150410 @default.
- W3204764705 cites W1988943381 @default.
- W3204764705 cites W1995581694 @default.
- W3204764705 cites W1998790173 @default.
- W3204764705 cites W2012198078 @default.
- W3204764705 cites W2020229137 @default.
- W3204764705 cites W2023586692 @default.
- W3204764705 cites W2027493053 @default.
- W3204764705 cites W2032708208 @default.
- W3204764705 cites W2038462420 @default.
- W3204764705 cites W2040451675 @default.
- W3204764705 cites W2041070217 @default.
- W3204764705 cites W2050730625 @default.
- W3204764705 cites W2051325100 @default.
- W3204764705 cites W2055975913 @default.
- W3204764705 cites W2058673141 @default.
- W3204764705 cites W2059536914 @default.
- W3204764705 cites W2073665258 @default.
- W3204764705 cites W2075707742 @default.
- W3204764705 cites W2076602648 @default.
- W3204764705 cites W2083412205 @default.
- W3204764705 cites W2094636343 @default.
- W3204764705 cites W2104029514 @default.
- W3204764705 cites W2113591413 @default.
- W3204764705 cites W2120702583 @default.
- W3204764705 cites W2120996986 @default.
- W3204764705 cites W2137463284 @default.
- W3204764705 cites W2142794393 @default.
- W3204764705 cites W2148429980 @default.
- W3204764705 cites W2148607520 @default.
- W3204764705 cites W2159468472 @default.
- W3204764705 cites W2164097234 @default.
- W3204764705 cites W2171111016 @default.
- W3204764705 cites W2264002775 @default.
- W3204764705 cites W2499906541 @default.
- W3204764705 cites W2529740021 @default.
- W3204764705 cites W2562842883 @default.
- W3204764705 cites W2599051951 @default.
- W3204764705 cites W2600286482 @default.
- W3204764705 cites W2742618965 @default.
- W3204764705 cites W2778004626 @default.
- W3204764705 cites W2813808847 @default.
- W3204764705 cites W2896120399 @default.
- W3204764705 cites W2900685293 @default.
- W3204764705 cites W2963525787 @default.
- W3204764705 cites W2964027345 @default.
- W3204764705 cites W2968228522 @default.
- W3204764705 cites W3004167570 @default.
- W3204764705 cites W3011322323 @default.
- W3204764705 cites W3037850448 @default.
- W3204764705 cites W3087587019 @default.
- W3204764705 cites W3098712897 @default.
- W3204764705 cites W3099381995 @default.
- W3204764705 cites W3147650139 @default.
- W3204764705 cites W3196228875 @default.
- W3204764705 doi "https://doi.org/10.1103/physrevb.104.155101" @default.
- W3204764705 hasPublicationYear "2021" @default.
- W3204764705 type Work @default.
- W3204764705 sameAs 3204764705 @default.
- W3204764705 citedByCount "7" @default.
- W3204764705 countsByYear W32047647052022 @default.
- W3204764705 countsByYear W32047647052023 @default.
- W3204764705 crossrefType "journal-article" @default.
- W3204764705 hasAuthorship W3204764705A5007778096 @default.
- W3204764705 hasAuthorship W3204764705A5072948773 @default.
- W3204764705 hasAuthorship W3204764705A5077464990 @default.
- W3204764705 hasAuthorship W3204764705A5083440483 @default.
- W3204764705 hasConcept C112806910 @default.
- W3204764705 hasConcept C113873419 @default.
- W3204764705 hasConcept C115961682 @default.
- W3204764705 hasConcept C121332964 @default.
- W3204764705 hasConcept C154945302 @default.
- W3204764705 hasConcept C192562407 @default.
- W3204764705 hasConcept C194257627 @default.
- W3204764705 hasConcept C26873012 @default.
- W3204764705 hasConcept C41008148 @default.
- W3204764705 hasConcept C46362747 @default.
- W3204764705 hasConcept C49040817 @default.
- W3204764705 hasConcept C99498987 @default.
- W3204764705 hasConceptScore W3204764705C112806910 @default.
- W3204764705 hasConceptScore W3204764705C113873419 @default.
- W3204764705 hasConceptScore W3204764705C115961682 @default.
- W3204764705 hasConceptScore W3204764705C121332964 @default.
- W3204764705 hasConceptScore W3204764705C154945302 @default.