Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204785461> ?p ?o ?g. }
- W3204785461 abstract "Abstract Background Prevalence for knee osteoarthritis is rising in both Sweden and globally due to increased age and obesity in the population. This has subsequently led to an increasing demand for knee arthroplasties. Correct diagnosis and classification of a knee osteoarthritis (OA) are therefore of a great interest in following-up and planning for either conservative or operative management. Most orthopedic surgeons rely on standard weight bearing radiographs of the knee. Improving the reliability and reproducibility of these interpretations could thus be hugely beneficial. Recently, deep learning which is a form of artificial intelligence (AI), has been showing promising results in interpreting radiographic images. In this study, we aim to evaluate how well an AI can classify the severity of knee OA, using entire image series and not excluding common visual disturbances such as an implant, cast and non-degenerative pathologies. Methods We selected 6103 radiographic exams of the knee taken at Danderyd University Hospital between the years 2002-2016 and manually categorized them according to the Kellgren & Lawrence grading scale (KL). We then trained a convolutional neural network (CNN) of ResNet architecture using PyTorch. We evaluated the results against a test set of 300 exams that had been reviewed independently by two senior orthopedic surgeons who settled eventual interobserver disagreements through consensus sessions. Results The CNN yielded an overall AUC of more than 0.87 for all KL grades except KL grade 2, which yielded an AUC of 0.8 and a mean AUC of 0.92. When merging adjacent KL grades, all but one group showed near perfect results with AUC > 0.95 indicating excellent performance. Conclusion We have found that we could teach a CNN to correctly diagnose and classify the severity of knee OA using the KL grading system without cleaning the input data from major visual disturbances such as implants and other pathologies." @default.
- W3204785461 created "2021-10-11" @default.
- W3204785461 creator A5013484847 @default.
- W3204785461 creator A5022575407 @default.
- W3204785461 creator A5043267289 @default.
- W3204785461 creator A5076423086 @default.
- W3204785461 creator A5087349940 @default.
- W3204785461 date "2021-10-02" @default.
- W3204785461 modified "2023-10-15" @default.
- W3204785461 title "Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population" @default.
- W3204785461 cites W1838568767 @default.
- W3204785461 cites W1967057044 @default.
- W3204785461 cites W1968922540 @default.
- W3204785461 cites W1980276147 @default.
- W3204785461 cites W2011258258 @default.
- W3204785461 cites W2053691787 @default.
- W3204785461 cites W2083800250 @default.
- W3204785461 cites W2105374662 @default.
- W3204785461 cites W2139489730 @default.
- W3204785461 cites W2166592703 @default.
- W3204785461 cites W2253579545 @default.
- W3204785461 cites W2330837397 @default.
- W3204785461 cites W2533800772 @default.
- W3204785461 cites W2897454585 @default.
- W3204785461 cites W2911066482 @default.
- W3204785461 cites W2951269226 @default.
- W3204785461 cites W2963202012 @default.
- W3204785461 cites W2999146124 @default.
- W3204785461 cites W3017873021 @default.
- W3204785461 cites W3094448053 @default.
- W3204785461 cites W3136150207 @default.
- W3204785461 cites W3137370705 @default.
- W3204785461 cites W3140187804 @default.
- W3204785461 cites W4231899502 @default.
- W3204785461 doi "https://doi.org/10.1186/s12891-021-04722-7" @default.
- W3204785461 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8487469" @default.
- W3204785461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34600505" @default.
- W3204785461 hasPublicationYear "2021" @default.
- W3204785461 type Work @default.
- W3204785461 sameAs 3204785461 @default.
- W3204785461 citedByCount "14" @default.
- W3204785461 countsByYear W32047854612022 @default.
- W3204785461 countsByYear W32047854612023 @default.
- W3204785461 crossrefType "journal-article" @default.
- W3204785461 hasAuthorship W3204785461A5013484847 @default.
- W3204785461 hasAuthorship W3204785461A5022575407 @default.
- W3204785461 hasAuthorship W3204785461A5043267289 @default.
- W3204785461 hasAuthorship W3204785461A5076423086 @default.
- W3204785461 hasAuthorship W3204785461A5087349940 @default.
- W3204785461 hasBestOaLocation W32047854611 @default.
- W3204785461 hasConcept C108583219 @default.
- W3204785461 hasConcept C119857082 @default.
- W3204785461 hasConcept C127413603 @default.
- W3204785461 hasConcept C141071460 @default.
- W3204785461 hasConcept C142724271 @default.
- W3204785461 hasConcept C147176958 @default.
- W3204785461 hasConcept C154945302 @default.
- W3204785461 hasConcept C1862650 @default.
- W3204785461 hasConcept C204787440 @default.
- W3204785461 hasConcept C2776164576 @default.
- W3204785461 hasConcept C2777286243 @default.
- W3204785461 hasConcept C2908647359 @default.
- W3204785461 hasConcept C36454342 @default.
- W3204785461 hasConcept C41008148 @default.
- W3204785461 hasConcept C43893838 @default.
- W3204785461 hasConcept C68312169 @default.
- W3204785461 hasConcept C71924100 @default.
- W3204785461 hasConcept C99454951 @default.
- W3204785461 hasConceptScore W3204785461C108583219 @default.
- W3204785461 hasConceptScore W3204785461C119857082 @default.
- W3204785461 hasConceptScore W3204785461C127413603 @default.
- W3204785461 hasConceptScore W3204785461C141071460 @default.
- W3204785461 hasConceptScore W3204785461C142724271 @default.
- W3204785461 hasConceptScore W3204785461C147176958 @default.
- W3204785461 hasConceptScore W3204785461C154945302 @default.
- W3204785461 hasConceptScore W3204785461C1862650 @default.
- W3204785461 hasConceptScore W3204785461C204787440 @default.
- W3204785461 hasConceptScore W3204785461C2776164576 @default.
- W3204785461 hasConceptScore W3204785461C2777286243 @default.
- W3204785461 hasConceptScore W3204785461C2908647359 @default.
- W3204785461 hasConceptScore W3204785461C36454342 @default.
- W3204785461 hasConceptScore W3204785461C41008148 @default.
- W3204785461 hasConceptScore W3204785461C43893838 @default.
- W3204785461 hasConceptScore W3204785461C68312169 @default.
- W3204785461 hasConceptScore W3204785461C71924100 @default.
- W3204785461 hasConceptScore W3204785461C99454951 @default.
- W3204785461 hasFunder F4320322315 @default.
- W3204785461 hasFunder F4320322570 @default.
- W3204785461 hasIssue "1" @default.
- W3204785461 hasLocation W32047854611 @default.
- W3204785461 hasLocation W32047854612 @default.
- W3204785461 hasLocation W32047854613 @default.
- W3204785461 hasOpenAccess W3204785461 @default.
- W3204785461 hasPrimaryLocation W32047854611 @default.
- W3204785461 hasRelatedWork W2795261237 @default.
- W3204785461 hasRelatedWork W3014300295 @default.
- W3204785461 hasRelatedWork W3164822677 @default.
- W3204785461 hasRelatedWork W4223943233 @default.
- W3204785461 hasRelatedWork W4225161397 @default.
- W3204785461 hasRelatedWork W4312200629 @default.