Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204785983> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3204785983 endingPage "12" @default.
- W3204785983 startingPage "1" @default.
- W3204785983 abstract "The defect identification of tunnel lining is a task with a lot of tasks and time-consuming work, and currently, it mainly relies on manual operation. This paper takes the ground-penetrating radar image of the internal defects of the lining as the research object, and chooses the popular VGG16, ResNet34 convolutional neural network (CNN) to build the automatic recognition model for comparative study, and proposes an improved ResNet34 defect-recognition model. In this paper, SGD and Adam training algorithms are used to update network parameters, and the PyTorch depth framework is used to train the network. The test results show that the ResNet34 network has faster convergence speed, higher accuracy rate, and shorter training time than the VGG16 network. The ResNet34 network using the Adam algorithm can achieve 99.08% accuracy. The improved ResNet34 network can achieve an accuracy of 99.25%, and at the same, reduce the parameter amount by 4.22% compared with the ResNet34 network, which can better identify defects in the lining. The research in this paper shows that the deep learning method can provide new ideas for the identification of tunnel lining defects." @default.
- W3204785983 created "2021-10-11" @default.
- W3204785983 creator A5013805194 @default.
- W3204785983 creator A5029818365 @default.
- W3204785983 creator A5047015502 @default.
- W3204785983 creator A5065272599 @default.
- W3204785983 creator A5069684317 @default.
- W3204785983 date "2021-09-30" @default.
- W3204785983 modified "2023-10-16" @default.
- W3204785983 title "Recognition Method of Tunnel Lining Defects Based on Deep Learning" @default.
- W3204785983 cites W2313907291 @default.
- W3204785983 cites W2913029471 @default.
- W3204785983 cites W2915458846 @default.
- W3204785983 cites W2945897706 @default.
- W3204785983 cites W2963372888 @default.
- W3204785983 cites W2989078636 @default.
- W3204785983 cites W3010605964 @default.
- W3204785983 cites W3034726856 @default.
- W3204785983 cites W3037098832 @default.
- W3204785983 cites W3045828810 @default.
- W3204785983 cites W3047631334 @default.
- W3204785983 cites W3100700517 @default.
- W3204785983 cites W3108087516 @default.
- W3204785983 cites W3117862097 @default.
- W3204785983 cites W3130982961 @default.
- W3204785983 cites W3140593863 @default.
- W3204785983 cites W3166603348 @default.
- W3204785983 cites W3176701065 @default.
- W3204785983 cites W3181520670 @default.
- W3204785983 doi "https://doi.org/10.1155/2021/9070182" @default.
- W3204785983 hasPublicationYear "2021" @default.
- W3204785983 type Work @default.
- W3204785983 sameAs 3204785983 @default.
- W3204785983 citedByCount "3" @default.
- W3204785983 countsByYear W32047859832023 @default.
- W3204785983 crossrefType "journal-article" @default.
- W3204785983 hasAuthorship W3204785983A5013805194 @default.
- W3204785983 hasAuthorship W3204785983A5029818365 @default.
- W3204785983 hasAuthorship W3204785983A5047015502 @default.
- W3204785983 hasAuthorship W3204785983A5065272599 @default.
- W3204785983 hasAuthorship W3204785983A5069684317 @default.
- W3204785983 hasBestOaLocation W32047859831 @default.
- W3204785983 hasConcept C104122410 @default.
- W3204785983 hasConcept C108583219 @default.
- W3204785983 hasConcept C116834253 @default.
- W3204785983 hasConcept C119857082 @default.
- W3204785983 hasConcept C153180895 @default.
- W3204785983 hasConcept C154945302 @default.
- W3204785983 hasConcept C162324750 @default.
- W3204785983 hasConcept C187736073 @default.
- W3204785983 hasConcept C2777303404 @default.
- W3204785983 hasConcept C2780451532 @default.
- W3204785983 hasConcept C41008148 @default.
- W3204785983 hasConcept C50522688 @default.
- W3204785983 hasConcept C50644808 @default.
- W3204785983 hasConcept C59822182 @default.
- W3204785983 hasConcept C81363708 @default.
- W3204785983 hasConcept C86803240 @default.
- W3204785983 hasConceptScore W3204785983C104122410 @default.
- W3204785983 hasConceptScore W3204785983C108583219 @default.
- W3204785983 hasConceptScore W3204785983C116834253 @default.
- W3204785983 hasConceptScore W3204785983C119857082 @default.
- W3204785983 hasConceptScore W3204785983C153180895 @default.
- W3204785983 hasConceptScore W3204785983C154945302 @default.
- W3204785983 hasConceptScore W3204785983C162324750 @default.
- W3204785983 hasConceptScore W3204785983C187736073 @default.
- W3204785983 hasConceptScore W3204785983C2777303404 @default.
- W3204785983 hasConceptScore W3204785983C2780451532 @default.
- W3204785983 hasConceptScore W3204785983C41008148 @default.
- W3204785983 hasConceptScore W3204785983C50522688 @default.
- W3204785983 hasConceptScore W3204785983C50644808 @default.
- W3204785983 hasConceptScore W3204785983C59822182 @default.
- W3204785983 hasConceptScore W3204785983C81363708 @default.
- W3204785983 hasConceptScore W3204785983C86803240 @default.
- W3204785983 hasLocation W32047859831 @default.
- W3204785983 hasOpenAccess W3204785983 @default.
- W3204785983 hasPrimaryLocation W32047859831 @default.
- W3204785983 hasRelatedWork W2337926734 @default.
- W3204785983 hasRelatedWork W2738221750 @default.
- W3204785983 hasRelatedWork W3021430260 @default.
- W3204785983 hasRelatedWork W3136076031 @default.
- W3204785983 hasRelatedWork W3156786002 @default.
- W3204785983 hasRelatedWork W4312417841 @default.
- W3204785983 hasRelatedWork W4320802194 @default.
- W3204785983 hasRelatedWork W4366224123 @default.
- W3204785983 hasRelatedWork W4381487685 @default.
- W3204785983 hasRelatedWork W564581980 @default.
- W3204785983 hasVolume "2021" @default.
- W3204785983 isParatext "false" @default.
- W3204785983 isRetracted "false" @default.
- W3204785983 magId "3204785983" @default.
- W3204785983 workType "article" @default.