Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204802647> ?p ?o ?g. }
- W3204802647 endingPage "6336" @default.
- W3204802647 startingPage "6336" @default.
- W3204802647 abstract "Better accuracy in short-term forecasting is required for intermediate planning for the national target to reduce CO2 emissions. High stake climate change conventions need accurate predictions of the future emission growth path of the participating countries to make informed decisions. The current study forecasts the CO2 emissions of the 17 key emitting countries. Unlike previous studies where linear statistical modeling is used to forecast the emissions, we develop a multilayer artificial neural network model to forecast the emissions. This model is a dynamic nonlinear model that helps to obtain optimal weights for the predictors with a high level of prediction accuracy. The model uses the gross domestic product (GDP), urban population ratio, and trade openness, as predictors for CO2 emissions. We observe an average of 96% prediction accuracy among the 17 countries which is much higher than the accuracy of the previous models. Using the optimal weights and available input data the forecasting of CO2 emissions is undertaken. The results show that high emitting countries, such as China, India, Iran, Indonesia, and Saudi Arabia are expected to increase their emissions in the near future. Currently, low emitting countries, such as Brazil, South Africa, Turkey, and South Korea will also tread on a high emission growth path. On the other hand, the USA, Japan, UK, France, Italy, Australia, and Canada will continuously reduce their emissions. These findings will help the countries to engage in climate mitigation and adaptation negotiations." @default.
- W3204802647 created "2021-10-11" @default.
- W3204802647 creator A5035555297 @default.
- W3204802647 creator A5063573474 @default.
- W3204802647 creator A5088406406 @default.
- W3204802647 date "2021-10-04" @default.
- W3204802647 modified "2023-10-14" @default.
- W3204802647 title "Forecasting the CO2 Emissions at the Global Level: A Multilayer Artificial Neural Network Modelling" @default.
- W3204802647 cites W1555341301 @default.
- W3204802647 cites W1966267680 @default.
- W3204802647 cites W2008491615 @default.
- W3204802647 cites W2071551700 @default.
- W3204802647 cites W2125481562 @default.
- W3204802647 cites W2136276883 @default.
- W3204802647 cites W2169014011 @default.
- W3204802647 cites W2177926054 @default.
- W3204802647 cites W2514249707 @default.
- W3204802647 cites W2588063069 @default.
- W3204802647 cites W2724986845 @default.
- W3204802647 cites W2755620462 @default.
- W3204802647 cites W2766937672 @default.
- W3204802647 cites W2801092353 @default.
- W3204802647 cites W2807756532 @default.
- W3204802647 cites W2883446938 @default.
- W3204802647 cites W2891623757 @default.
- W3204802647 cites W2909476781 @default.
- W3204802647 cites W2941164672 @default.
- W3204802647 cites W2956787486 @default.
- W3204802647 cites W2966766839 @default.
- W3204802647 cites W2996734542 @default.
- W3204802647 cites W3004721785 @default.
- W3204802647 cites W3042675661 @default.
- W3204802647 cites W3084088864 @default.
- W3204802647 cites W3087070736 @default.
- W3204802647 cites W3092799709 @default.
- W3204802647 cites W3119509403 @default.
- W3204802647 cites W3121861737 @default.
- W3204802647 cites W3122477235 @default.
- W3204802647 cites W3125652390 @default.
- W3204802647 cites W3129800798 @default.
- W3204802647 cites W3132151802 @default.
- W3204802647 cites W3137516072 @default.
- W3204802647 cites W3152974896 @default.
- W3204802647 cites W3165639975 @default.
- W3204802647 cites W3175323051 @default.
- W3204802647 cites W813478619 @default.
- W3204802647 doi "https://doi.org/10.3390/en14196336" @default.
- W3204802647 hasPublicationYear "2021" @default.
- W3204802647 type Work @default.
- W3204802647 sameAs 3204802647 @default.
- W3204802647 citedByCount "15" @default.
- W3204802647 countsByYear W32048026472022 @default.
- W3204802647 countsByYear W32048026472023 @default.
- W3204802647 crossrefType "journal-article" @default.
- W3204802647 hasAuthorship W3204802647A5035555297 @default.
- W3204802647 hasAuthorship W3204802647A5063573474 @default.
- W3204802647 hasAuthorship W3204802647A5088406406 @default.
- W3204802647 hasBestOaLocation W32048026471 @default.
- W3204802647 hasConcept C114350782 @default.
- W3204802647 hasConcept C119857082 @default.
- W3204802647 hasConcept C132651083 @default.
- W3204802647 hasConcept C149782125 @default.
- W3204802647 hasConcept C15744967 @default.
- W3204802647 hasConcept C162324750 @default.
- W3204802647 hasConcept C18903297 @default.
- W3204802647 hasConcept C39432304 @default.
- W3204802647 hasConcept C41008148 @default.
- W3204802647 hasConcept C47737302 @default.
- W3204802647 hasConcept C50522688 @default.
- W3204802647 hasConcept C50644808 @default.
- W3204802647 hasConcept C77805123 @default.
- W3204802647 hasConcept C84976871 @default.
- W3204802647 hasConcept C86803240 @default.
- W3204802647 hasConceptScore W3204802647C114350782 @default.
- W3204802647 hasConceptScore W3204802647C119857082 @default.
- W3204802647 hasConceptScore W3204802647C132651083 @default.
- W3204802647 hasConceptScore W3204802647C149782125 @default.
- W3204802647 hasConceptScore W3204802647C15744967 @default.
- W3204802647 hasConceptScore W3204802647C162324750 @default.
- W3204802647 hasConceptScore W3204802647C18903297 @default.
- W3204802647 hasConceptScore W3204802647C39432304 @default.
- W3204802647 hasConceptScore W3204802647C41008148 @default.
- W3204802647 hasConceptScore W3204802647C47737302 @default.
- W3204802647 hasConceptScore W3204802647C50522688 @default.
- W3204802647 hasConceptScore W3204802647C50644808 @default.
- W3204802647 hasConceptScore W3204802647C77805123 @default.
- W3204802647 hasConceptScore W3204802647C84976871 @default.
- W3204802647 hasConceptScore W3204802647C86803240 @default.
- W3204802647 hasIssue "19" @default.
- W3204802647 hasLocation W32048026471 @default.
- W3204802647 hasLocation W32048026472 @default.
- W3204802647 hasOpenAccess W3204802647 @default.
- W3204802647 hasPrimaryLocation W32048026471 @default.
- W3204802647 hasRelatedWork W1987754865 @default.
- W3204802647 hasRelatedWork W2059242528 @default.
- W3204802647 hasRelatedWork W2228848233 @default.
- W3204802647 hasRelatedWork W2292088140 @default.
- W3204802647 hasRelatedWork W2355169096 @default.