Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204804891> ?p ?o ?g. }
- W3204804891 endingPage "2578" @default.
- W3204804891 startingPage "2578" @default.
- W3204804891 abstract "Phase change materials (PCMs) are of increasing interest due to their ability to absorb and store large amounts of thermal energy, with minimal temperature variations. In the phase-change process, these large amounts of thermal energy can be stored with a minimal change in temperature during both the solid/liquid and liquid/vapor phase transitions. As a result, these PCMs are experiencing increased use in applications such as solar energy heating or storage, building insulation, electronic cooling, food storage, and waste heat recovery. Low temperature, nano-enhanced phase change materials (NEPCM) are of particular interest, due to the recent increase in applications related to the shipment of cellular based materials and vaccines, both of which require precise temperature control for sustained periods of time. Information such as PCM and nanoparticle type, the effective goals, and manipulation of PCM thermal properties are assembled from the literature, evaluated, and discussed in detail, to provide an overview of NEPCMs and provide guidance for additional study. Current studies of NEPCMs are limited in scope, with the primary focus of a majority of recent investigations directed at increasing the thermal conductivity and reducing the charging and discharging times. Only a limited number of investigations have examined the issues related to increasing the latent heat to improve the thermal capacity or enhancing the stability to prevent sedimentation of the nanoparticles. In addition, this review examines several other important thermophysical parameters, including the thermal conductivity, phase transition temperature, rheological affects, and the chemical stability of NEPCMs. This is accomplished largely through comparing of the thermophysical properties of the base PCMs and their nano-enhanced counter parts and then evaluating the relative effectiveness of the various types of NEPCMs. Although there are exceptions, for a majority of conventional heat transfer fluids the thermal conductivity of the base PCM generally increases, and the latent heat decreases as the mass fraction of the nanoparticles increases, whereas trends in phase change temperature are often dependent upon the properties of the individual components. A number of recommendations for further study are made, including a better understanding of the stability of NEPCMs such that sedimentation is limited and thus capable of withstanding long-term thermal cycles without significant degradation of thermal properties, along with the identification of those factors that have the greatest overall impact and which PCM combinations might result in the most significant increases in latent heat." @default.
- W3204804891 created "2021-10-11" @default.
- W3204804891 creator A5002904258 @default.
- W3204804891 creator A5071843314 @default.
- W3204804891 date "2021-09-30" @default.
- W3204804891 modified "2023-10-16" @default.
- W3204804891 title "A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials" @default.
- W3204804891 cites W1828867763 @default.
- W3204804891 cites W1964233017 @default.
- W3204804891 cites W1972803754 @default.
- W3204804891 cites W1987594617 @default.
- W3204804891 cites W1991301913 @default.
- W3204804891 cites W1998559598 @default.
- W3204804891 cites W2007621628 @default.
- W3204804891 cites W2010294451 @default.
- W3204804891 cites W2010879338 @default.
- W3204804891 cites W2011353430 @default.
- W3204804891 cites W2020197052 @default.
- W3204804891 cites W2025341419 @default.
- W3204804891 cites W2025577003 @default.
- W3204804891 cites W2029343964 @default.
- W3204804891 cites W2031088677 @default.
- W3204804891 cites W2031470336 @default.
- W3204804891 cites W2031812761 @default.
- W3204804891 cites W2034531759 @default.
- W3204804891 cites W2034674188 @default.
- W3204804891 cites W2038853427 @default.
- W3204804891 cites W2044197719 @default.
- W3204804891 cites W2045227011 @default.
- W3204804891 cites W2053448154 @default.
- W3204804891 cites W2066128362 @default.
- W3204804891 cites W2067508405 @default.
- W3204804891 cites W2074258439 @default.
- W3204804891 cites W2088294510 @default.
- W3204804891 cites W2122625849 @default.
- W3204804891 cites W2151080396 @default.
- W3204804891 cites W2163755005 @default.
- W3204804891 cites W2273706909 @default.
- W3204804891 cites W2289002440 @default.
- W3204804891 cites W2295735473 @default.
- W3204804891 cites W2314529780 @default.
- W3204804891 cites W2544896281 @default.
- W3204804891 cites W2566033397 @default.
- W3204804891 cites W2613124924 @default.
- W3204804891 cites W2623294988 @default.
- W3204804891 cites W2736222585 @default.
- W3204804891 cites W2806652087 @default.
- W3204804891 cites W2896967909 @default.
- W3204804891 cites W2901813521 @default.
- W3204804891 cites W2916421134 @default.
- W3204804891 cites W2924730119 @default.
- W3204804891 cites W2953639414 @default.
- W3204804891 cites W2965564389 @default.
- W3204804891 cites W2972802469 @default.
- W3204804891 cites W2984579860 @default.
- W3204804891 cites W2998187179 @default.
- W3204804891 cites W3000429012 @default.
- W3204804891 cites W3001224766 @default.
- W3204804891 cites W3015644037 @default.
- W3204804891 cites W3019840847 @default.
- W3204804891 cites W3034368473 @default.
- W3204804891 cites W3086219830 @default.
- W3204804891 cites W3120868009 @default.
- W3204804891 cites W3133424002 @default.
- W3204804891 cites W3150729025 @default.
- W3204804891 cites W3175481636 @default.
- W3204804891 doi "https://doi.org/10.3390/nano11102578" @default.
- W3204804891 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8538295" @default.
- W3204804891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34685017" @default.
- W3204804891 hasPublicationYear "2021" @default.
- W3204804891 type Work @default.
- W3204804891 sameAs 3204804891 @default.
- W3204804891 citedByCount "22" @default.
- W3204804891 countsByYear W32048048912021 @default.
- W3204804891 countsByYear W32048048912022 @default.
- W3204804891 countsByYear W32048048912023 @default.
- W3204804891 crossrefType "journal-article" @default.
- W3204804891 hasAuthorship W3204804891A5002904258 @default.
- W3204804891 hasAuthorship W3204804891A5071843314 @default.
- W3204804891 hasBestOaLocation W32048048911 @default.
- W3204804891 hasConcept C107706546 @default.
- W3204804891 hasConcept C107861326 @default.
- W3204804891 hasConcept C121332964 @default.
- W3204804891 hasConcept C127413603 @default.
- W3204804891 hasConcept C133256868 @default.
- W3204804891 hasConcept C149288129 @default.
- W3204804891 hasConcept C159985019 @default.
- W3204804891 hasConcept C163258240 @default.
- W3204804891 hasConcept C171250308 @default.
- W3204804891 hasConcept C183287310 @default.
- W3204804891 hasConcept C184235594 @default.
- W3204804891 hasConcept C192562407 @default.
- W3204804891 hasConcept C204530211 @default.
- W3204804891 hasConcept C21880701 @default.
- W3204804891 hasConcept C2778119658 @default.
- W3204804891 hasConcept C42360764 @default.
- W3204804891 hasConcept C58024561 @default.
- W3204804891 hasConcept C59061564 @default.