Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204805281> ?p ?o ?g. }
- W3204805281 endingPage "25830" @default.
- W3204805281 startingPage "25818" @default.
- W3204805281 abstract "Electrical Capacitance Tomography (ECT) image reconstruction has been largely applied for industrial applications. However, there is still a crucial need to develop a new framework to enhance the quality of reconstructed images and make it faster. Deep learning has recently boomed and applied in many fields since it is good at mapping complicated nonlinear functions based on series of artificial neural networks. In this paper, a novel image reconstruction method based on a deep neural network is proposed. The proposed image reconstruction algorithm mainly uses Long Short-Term Memory (LSTM) deep neural network, which is abbreviated as LSTM-IR algorithm. A big simulation dataset containing 160k pairs of instances is created to train and test the performance of the proposed LSTM-IR algorithm. Each pair of the sample has a predefined permittivity distribution vector and corresponding capacitance vector. The generalization ability and feasibility of the LSTM-IR network are measured using contaminated data, data not included in the training dataset, and experimental data. The preliminary results show that the proposed LSTM-IR method can create fast and more accurate ECT images than traditional and deep learning image reconstruction algorithms." @default.
- W3204805281 created "2021-10-11" @default.
- W3204805281 creator A5056932618 @default.
- W3204805281 creator A5057892205 @default.
- W3204805281 date "2021-11-15" @default.
- W3204805281 modified "2023-10-06" @default.
- W3204805281 title "Image Reconstruction in Electrical Capacitance Tomography Based on Deep Neural Networks" @default.
- W3204805281 cites W1576227399 @default.
- W3204805281 cites W1689711448 @default.
- W3204805281 cites W1923404803 @default.
- W3204805281 cites W1977420161 @default.
- W3204805281 cites W1991540127 @default.
- W3204805281 cites W2017173615 @default.
- W3204805281 cites W2021076685 @default.
- W3204805281 cites W2026945543 @default.
- W3204805281 cites W2034496462 @default.
- W3204805281 cites W2035414577 @default.
- W3204805281 cites W2049772201 @default.
- W3204805281 cites W2060021325 @default.
- W3204805281 cites W2060615711 @default.
- W3204805281 cites W2064675550 @default.
- W3204805281 cites W2089674817 @default.
- W3204805281 cites W2106050534 @default.
- W3204805281 cites W2118023920 @default.
- W3204805281 cites W2141002303 @default.
- W3204805281 cites W2153527995 @default.
- W3204805281 cites W2157331557 @default.
- W3204805281 cites W2208614954 @default.
- W3204805281 cites W2293634267 @default.
- W3204805281 cites W2530307286 @default.
- W3204805281 cites W2553132886 @default.
- W3204805281 cites W2569905340 @default.
- W3204805281 cites W2772850511 @default.
- W3204805281 cites W2804478515 @default.
- W3204805281 cites W2826642550 @default.
- W3204805281 cites W2896344704 @default.
- W3204805281 cites W2910365108 @default.
- W3204805281 cites W2919115771 @default.
- W3204805281 cites W2997407862 @default.
- W3204805281 cites W2998812258 @default.
- W3204805281 cites W2999762823 @default.
- W3204805281 cites W3009936147 @default.
- W3204805281 cites W3010268473 @default.
- W3204805281 cites W3085246644 @default.
- W3204805281 cites W3089192678 @default.
- W3204805281 cites W3094153554 @default.
- W3204805281 cites W3112016482 @default.
- W3204805281 cites W3123686291 @default.
- W3204805281 cites W3123944501 @default.
- W3204805281 cites W3145887985 @default.
- W3204805281 cites W3161129628 @default.
- W3204805281 cites W4205947740 @default.
- W3204805281 doi "https://doi.org/10.1109/jsen.2021.3116164" @default.
- W3204805281 hasPublicationYear "2021" @default.
- W3204805281 type Work @default.
- W3204805281 sameAs 3204805281 @default.
- W3204805281 citedByCount "13" @default.
- W3204805281 countsByYear W32048052812022 @default.
- W3204805281 countsByYear W32048052812023 @default.
- W3204805281 crossrefType "journal-article" @default.
- W3204805281 hasAuthorship W3204805281A5056932618 @default.
- W3204805281 hasAuthorship W3204805281A5057892205 @default.
- W3204805281 hasConcept C108583219 @default.
- W3204805281 hasConcept C11413529 @default.
- W3204805281 hasConcept C115961682 @default.
- W3204805281 hasConcept C134306372 @default.
- W3204805281 hasConcept C141379421 @default.
- W3204805281 hasConcept C147789679 @default.
- W3204805281 hasConcept C153180895 @default.
- W3204805281 hasConcept C154945302 @default.
- W3204805281 hasConcept C17525397 @default.
- W3204805281 hasConcept C177148314 @default.
- W3204805281 hasConcept C185592680 @default.
- W3204805281 hasConcept C198531522 @default.
- W3204805281 hasConcept C2777418626 @default.
- W3204805281 hasConcept C30066665 @default.
- W3204805281 hasConcept C31972630 @default.
- W3204805281 hasConcept C33923547 @default.
- W3204805281 hasConcept C41008148 @default.
- W3204805281 hasConcept C43617362 @default.
- W3204805281 hasConcept C50644808 @default.
- W3204805281 hasConceptScore W3204805281C108583219 @default.
- W3204805281 hasConceptScore W3204805281C11413529 @default.
- W3204805281 hasConceptScore W3204805281C115961682 @default.
- W3204805281 hasConceptScore W3204805281C134306372 @default.
- W3204805281 hasConceptScore W3204805281C141379421 @default.
- W3204805281 hasConceptScore W3204805281C147789679 @default.
- W3204805281 hasConceptScore W3204805281C153180895 @default.
- W3204805281 hasConceptScore W3204805281C154945302 @default.
- W3204805281 hasConceptScore W3204805281C17525397 @default.
- W3204805281 hasConceptScore W3204805281C177148314 @default.
- W3204805281 hasConceptScore W3204805281C185592680 @default.
- W3204805281 hasConceptScore W3204805281C198531522 @default.
- W3204805281 hasConceptScore W3204805281C2777418626 @default.
- W3204805281 hasConceptScore W3204805281C30066665 @default.
- W3204805281 hasConceptScore W3204805281C31972630 @default.
- W3204805281 hasConceptScore W3204805281C33923547 @default.
- W3204805281 hasConceptScore W3204805281C41008148 @default.