Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204809786> ?p ?o ?g. }
- W3204809786 endingPage "625" @default.
- W3204809786 startingPage "611" @default.
- W3204809786 abstract "To reduce uploading bandwidth and address privacy concerns, deep learning at the network edge has been an emerging topic. Typically, edge devices collaboratively train a shared model using real-time generated data through the Parameter Server framework. Although all the edge devices can share the computing workloads, the distributed training processes over edge networks are still time-consuming due to the parameters and gradients transmission procedures between parameter servers and edge devices. Focusing on accelerating distributed Convolutional Neural Networks (CNNs) training at the network edge, we present DynaComm, a novel scheduler that dynamically decomposes each transmission procedure into several segments to achieve optimal layer-wise communications and computations overlapping during run-time. Through experiments, we verify that DynaComm manages to achieve optimal layer-wise scheduling for all cases compared to competing strategies while the model accuracy remains untouched." @default.
- W3204809786 created "2021-10-11" @default.
- W3204809786 creator A5036856464 @default.
- W3204809786 creator A5040791046 @default.
- W3204809786 creator A5058507537 @default.
- W3204809786 creator A5074022699 @default.
- W3204809786 creator A5075510757 @default.
- W3204809786 creator A5083126177 @default.
- W3204809786 creator A5088761760 @default.
- W3204809786 date "2022-02-01" @default.
- W3204809786 modified "2023-10-18" @default.
- W3204809786 title "DynaComm: Accelerating Distributed CNN Training Between Edges and Clouds Through Dynamic Communication Scheduling" @default.
- W3204809786 cites W1980516134 @default.
- W3204809786 cites W2059003697 @default.
- W3204809786 cites W2086402015 @default.
- W3204809786 cites W2097117768 @default.
- W3204809786 cites W2117539524 @default.
- W3204809786 cites W2156547346 @default.
- W3204809786 cites W2194775991 @default.
- W3204809786 cites W2416799949 @default.
- W3204809786 cites W2605258629 @default.
- W3204809786 cites W2612193523 @default.
- W3204809786 cites W2624989916 @default.
- W3204809786 cites W2758228613 @default.
- W3204809786 cites W2785324822 @default.
- W3204809786 cites W2786070938 @default.
- W3204809786 cites W2791175987 @default.
- W3204809786 cites W2896180420 @default.
- W3204809786 cites W2896225285 @default.
- W3204809786 cites W2904556356 @default.
- W3204809786 cites W2943201207 @default.
- W3204809786 cites W2947898397 @default.
- W3204809786 cites W2975712713 @default.
- W3204809786 cites W2978480967 @default.
- W3204809786 cites W2981114133 @default.
- W3204809786 cites W2981758446 @default.
- W3204809786 cites W3003893379 @default.
- W3204809786 cites W3024862772 @default.
- W3204809786 cites W3025279871 @default.
- W3204809786 cites W3047002910 @default.
- W3204809786 cites W3047537431 @default.
- W3204809786 cites W3082674854 @default.
- W3204809786 cites W3117176175 @default.
- W3204809786 cites W3134069806 @default.
- W3204809786 doi "https://doi.org/10.1109/jsac.2021.3118419" @default.
- W3204809786 hasPublicationYear "2022" @default.
- W3204809786 type Work @default.
- W3204809786 sameAs 3204809786 @default.
- W3204809786 citedByCount "5" @default.
- W3204809786 countsByYear W32048097862021 @default.
- W3204809786 countsByYear W32048097862022 @default.
- W3204809786 countsByYear W32048097862023 @default.
- W3204809786 crossrefType "journal-article" @default.
- W3204809786 hasAuthorship W3204809786A5036856464 @default.
- W3204809786 hasAuthorship W3204809786A5040791046 @default.
- W3204809786 hasAuthorship W3204809786A5058507537 @default.
- W3204809786 hasAuthorship W3204809786A5074022699 @default.
- W3204809786 hasAuthorship W3204809786A5075510757 @default.
- W3204809786 hasAuthorship W3204809786A5083126177 @default.
- W3204809786 hasAuthorship W3204809786A5088761760 @default.
- W3204809786 hasBestOaLocation W32048097862 @default.
- W3204809786 hasConcept C108583219 @default.
- W3204809786 hasConcept C111919701 @default.
- W3204809786 hasConcept C11413529 @default.
- W3204809786 hasConcept C120314980 @default.
- W3204809786 hasConcept C138236772 @default.
- W3204809786 hasConcept C154945302 @default.
- W3204809786 hasConcept C162307627 @default.
- W3204809786 hasConcept C162324750 @default.
- W3204809786 hasConcept C206729178 @default.
- W3204809786 hasConcept C21547014 @default.
- W3204809786 hasConcept C2778456923 @default.
- W3204809786 hasConcept C31258907 @default.
- W3204809786 hasConcept C41008148 @default.
- W3204809786 hasConcept C45374587 @default.
- W3204809786 hasConcept C71901391 @default.
- W3204809786 hasConcept C79974875 @default.
- W3204809786 hasConcept C81363708 @default.
- W3204809786 hasConcept C93996380 @default.
- W3204809786 hasConceptScore W3204809786C108583219 @default.
- W3204809786 hasConceptScore W3204809786C111919701 @default.
- W3204809786 hasConceptScore W3204809786C11413529 @default.
- W3204809786 hasConceptScore W3204809786C120314980 @default.
- W3204809786 hasConceptScore W3204809786C138236772 @default.
- W3204809786 hasConceptScore W3204809786C154945302 @default.
- W3204809786 hasConceptScore W3204809786C162307627 @default.
- W3204809786 hasConceptScore W3204809786C162324750 @default.
- W3204809786 hasConceptScore W3204809786C206729178 @default.
- W3204809786 hasConceptScore W3204809786C21547014 @default.
- W3204809786 hasConceptScore W3204809786C2778456923 @default.
- W3204809786 hasConceptScore W3204809786C31258907 @default.
- W3204809786 hasConceptScore W3204809786C41008148 @default.
- W3204809786 hasConceptScore W3204809786C45374587 @default.
- W3204809786 hasConceptScore W3204809786C71901391 @default.
- W3204809786 hasConceptScore W3204809786C79974875 @default.
- W3204809786 hasConceptScore W3204809786C81363708 @default.
- W3204809786 hasConceptScore W3204809786C93996380 @default.
- W3204809786 hasFunder F4320321001 @default.