Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204828101> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3204828101 endingPage "012002" @default.
- W3204828101 startingPage "012002" @default.
- W3204828101 abstract "Hormone-binding proteins (HBPs) are carrier proteins that specifically bind to targeted hormones. Some evidence suggests that the abnormal expression of HBPs causes various diseases. Therefore, it is significant to accurately identify HBPs to study these diseases. Recently, many researchers have proposed traditional machine learning methods to complete this work, but these methods are neither suitable for training on large-scale datasets nor take into account the contextual features of HBPs. In this paper, I propose a new deep learning method, TCN-HBP, to distinguish HBPs. TCN-HBP consists of a coding layer, embedding layer, convolutional neural network (CNN) layer and temporal convolutional network (TCN) layer. The coding and embedding layers extend the protein sequences into two-dimensional matrix data. The CNN layer convolves the matrix data to form feature maps. The TCN layer captures the contextual features present in the feature maps. Experiments show that the data generalization capabilities and recognition accuracy (99.15%) of TCN-HBP on large datasets perform better than previous methods." @default.
- W3204828101 created "2021-10-11" @default.
- W3204828101 creator A5052528110 @default.
- W3204828101 date "2021-09-01" @default.
- W3204828101 modified "2023-09-25" @default.
- W3204828101 title "TCN-HBP: A Deep Learning Method for Identifying Hormone-Binding Proteins from Amino Acid Sequences Based on a Temporal Convolution Neural Network" @default.
- W3204828101 cites W1019830208 @default.
- W3204828101 cites W1491040459 @default.
- W3204828101 cites W2027364181 @default.
- W3204828101 cites W2044395145 @default.
- W3204828101 cites W2050945397 @default.
- W3204828101 cites W2079120335 @default.
- W3204828101 cites W2120615054 @default.
- W3204828101 cites W2144773160 @default.
- W3204828101 cites W2433743436 @default.
- W3204828101 cites W2761903250 @default.
- W3204828101 cites W2777094228 @default.
- W3204828101 cites W2803517106 @default.
- W3204828101 cites W2805110914 @default.
- W3204828101 cites W2898355747 @default.
- W3204828101 cites W2904529113 @default.
- W3204828101 cites W2923490814 @default.
- W3204828101 cites W2963069536 @default.
- W3204828101 cites W2966038743 @default.
- W3204828101 cites W3044140833 @default.
- W3204828101 cites W4230932396 @default.
- W3204828101 cites W2731608972 @default.
- W3204828101 doi "https://doi.org/10.1088/1742-6596/2025/1/012002" @default.
- W3204828101 hasPublicationYear "2021" @default.
- W3204828101 type Work @default.
- W3204828101 sameAs 3204828101 @default.
- W3204828101 citedByCount "0" @default.
- W3204828101 crossrefType "journal-article" @default.
- W3204828101 hasAuthorship W3204828101A5052528110 @default.
- W3204828101 hasBestOaLocation W32048281011 @default.
- W3204828101 hasConcept C105795698 @default.
- W3204828101 hasConcept C108583219 @default.
- W3204828101 hasConcept C119857082 @default.
- W3204828101 hasConcept C134306372 @default.
- W3204828101 hasConcept C138885662 @default.
- W3204828101 hasConcept C153180895 @default.
- W3204828101 hasConcept C154945302 @default.
- W3204828101 hasConcept C177148314 @default.
- W3204828101 hasConcept C178790620 @default.
- W3204828101 hasConcept C179518139 @default.
- W3204828101 hasConcept C185592680 @default.
- W3204828101 hasConcept C2776401178 @default.
- W3204828101 hasConcept C2779227376 @default.
- W3204828101 hasConcept C33923547 @default.
- W3204828101 hasConcept C41008148 @default.
- W3204828101 hasConcept C41608201 @default.
- W3204828101 hasConcept C41895202 @default.
- W3204828101 hasConcept C45347329 @default.
- W3204828101 hasConcept C50644808 @default.
- W3204828101 hasConcept C81363708 @default.
- W3204828101 hasConceptScore W3204828101C105795698 @default.
- W3204828101 hasConceptScore W3204828101C108583219 @default.
- W3204828101 hasConceptScore W3204828101C119857082 @default.
- W3204828101 hasConceptScore W3204828101C134306372 @default.
- W3204828101 hasConceptScore W3204828101C138885662 @default.
- W3204828101 hasConceptScore W3204828101C153180895 @default.
- W3204828101 hasConceptScore W3204828101C154945302 @default.
- W3204828101 hasConceptScore W3204828101C177148314 @default.
- W3204828101 hasConceptScore W3204828101C178790620 @default.
- W3204828101 hasConceptScore W3204828101C179518139 @default.
- W3204828101 hasConceptScore W3204828101C185592680 @default.
- W3204828101 hasConceptScore W3204828101C2776401178 @default.
- W3204828101 hasConceptScore W3204828101C2779227376 @default.
- W3204828101 hasConceptScore W3204828101C33923547 @default.
- W3204828101 hasConceptScore W3204828101C41008148 @default.
- W3204828101 hasConceptScore W3204828101C41608201 @default.
- W3204828101 hasConceptScore W3204828101C41895202 @default.
- W3204828101 hasConceptScore W3204828101C45347329 @default.
- W3204828101 hasConceptScore W3204828101C50644808 @default.
- W3204828101 hasConceptScore W3204828101C81363708 @default.
- W3204828101 hasIssue "1" @default.
- W3204828101 hasLocation W32048281011 @default.
- W3204828101 hasOpenAccess W3204828101 @default.
- W3204828101 hasPrimaryLocation W32048281011 @default.
- W3204828101 hasRelatedWork W2295021132 @default.
- W3204828101 hasRelatedWork W2337926734 @default.
- W3204828101 hasRelatedWork W2738221750 @default.
- W3204828101 hasRelatedWork W2760085659 @default.
- W3204828101 hasRelatedWork W3129634582 @default.
- W3204828101 hasRelatedWork W3156786002 @default.
- W3204828101 hasRelatedWork W4311257506 @default.
- W3204828101 hasRelatedWork W4312417841 @default.
- W3204828101 hasRelatedWork W4366224123 @default.
- W3204828101 hasRelatedWork W564581980 @default.
- W3204828101 hasVolume "2025" @default.
- W3204828101 isParatext "false" @default.
- W3204828101 isRetracted "false" @default.
- W3204828101 magId "3204828101" @default.
- W3204828101 workType "article" @default.