Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204828170> ?p ?o ?g. }
- W3204828170 endingPage "6636" @default.
- W3204828170 startingPage "6636" @default.
- W3204828170 abstract "Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine learning algorithms could be used to detect and classify stumbling events in a dataset comprising of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also performed multiple Activities of Daily Living. During data processing, an event-defined window segmentation technique was used to trace high peaks in acceleration that could potentially be stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subsequently, discriminative features were extracted and fed to train seven different types of machine learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble detection app named Stumblemeter. This work shows that stumble detection and classification based on SVM is accurate and ready to apply in clinical practice." @default.
- W3204828170 created "2021-10-11" @default.
- W3204828170 creator A5016167410 @default.
- W3204828170 creator A5026332309 @default.
- W3204828170 creator A5061052675 @default.
- W3204828170 date "2021-10-06" @default.
- W3204828170 modified "2023-09-23" @default.
- W3204828170 title "The Stumblemeter: Design and Validation of a System That Detects and Classifies Stumbles during Gait" @default.
- W3204828170 cites W1985233755 @default.
- W3204828170 cites W2001619934 @default.
- W3204828170 cites W2021367230 @default.
- W3204828170 cites W2075631461 @default.
- W3204828170 cites W2095976411 @default.
- W3204828170 cites W2100805904 @default.
- W3204828170 cites W2106452491 @default.
- W3204828170 cites W2112807011 @default.
- W3204828170 cites W2125943029 @default.
- W3204828170 cites W2129081037 @default.
- W3204828170 cites W2130643524 @default.
- W3204828170 cites W2131368080 @default.
- W3204828170 cites W2135305172 @default.
- W3204828170 cites W2140573898 @default.
- W3204828170 cites W2144073363 @default.
- W3204828170 cites W2151867794 @default.
- W3204828170 cites W2155759092 @default.
- W3204828170 cites W2161374358 @default.
- W3204828170 cites W2165938052 @default.
- W3204828170 cites W2208583727 @default.
- W3204828170 cites W2496379565 @default.
- W3204828170 cites W2548465037 @default.
- W3204828170 cites W2557438590 @default.
- W3204828170 cites W2949257037 @default.
- W3204828170 cites W3042409104 @default.
- W3204828170 cites W4231644132 @default.
- W3204828170 doi "https://doi.org/10.3390/s21196636" @default.
- W3204828170 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8513070" @default.
- W3204828170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34640956" @default.
- W3204828170 hasPublicationYear "2021" @default.
- W3204828170 type Work @default.
- W3204828170 sameAs 3204828170 @default.
- W3204828170 citedByCount "3" @default.
- W3204828170 countsByYear W32048281702022 @default.
- W3204828170 countsByYear W32048281702023 @default.
- W3204828170 crossrefType "journal-article" @default.
- W3204828170 hasAuthorship W3204828170A5016167410 @default.
- W3204828170 hasAuthorship W3204828170A5026332309 @default.
- W3204828170 hasAuthorship W3204828170A5061052675 @default.
- W3204828170 hasBestOaLocation W32048281701 @default.
- W3204828170 hasConcept C111919701 @default.
- W3204828170 hasConcept C119857082 @default.
- W3204828170 hasConcept C12267149 @default.
- W3204828170 hasConcept C149635348 @default.
- W3204828170 hasConcept C150594956 @default.
- W3204828170 hasConcept C151800584 @default.
- W3204828170 hasConcept C154945302 @default.
- W3204828170 hasConcept C1862650 @default.
- W3204828170 hasConcept C2776654903 @default.
- W3204828170 hasConcept C2781464450 @default.
- W3204828170 hasConcept C38652104 @default.
- W3204828170 hasConcept C41008148 @default.
- W3204828170 hasConcept C71924100 @default.
- W3204828170 hasConcept C79061980 @default.
- W3204828170 hasConcept C89805583 @default.
- W3204828170 hasConcept C97931131 @default.
- W3204828170 hasConcept C99508421 @default.
- W3204828170 hasConceptScore W3204828170C111919701 @default.
- W3204828170 hasConceptScore W3204828170C119857082 @default.
- W3204828170 hasConceptScore W3204828170C12267149 @default.
- W3204828170 hasConceptScore W3204828170C149635348 @default.
- W3204828170 hasConceptScore W3204828170C150594956 @default.
- W3204828170 hasConceptScore W3204828170C151800584 @default.
- W3204828170 hasConceptScore W3204828170C154945302 @default.
- W3204828170 hasConceptScore W3204828170C1862650 @default.
- W3204828170 hasConceptScore W3204828170C2776654903 @default.
- W3204828170 hasConceptScore W3204828170C2781464450 @default.
- W3204828170 hasConceptScore W3204828170C38652104 @default.
- W3204828170 hasConceptScore W3204828170C41008148 @default.
- W3204828170 hasConceptScore W3204828170C71924100 @default.
- W3204828170 hasConceptScore W3204828170C79061980 @default.
- W3204828170 hasConceptScore W3204828170C89805583 @default.
- W3204828170 hasConceptScore W3204828170C97931131 @default.
- W3204828170 hasConceptScore W3204828170C99508421 @default.
- W3204828170 hasIssue "19" @default.
- W3204828170 hasLocation W32048281701 @default.
- W3204828170 hasLocation W32048281702 @default.
- W3204828170 hasLocation W32048281703 @default.
- W3204828170 hasLocation W32048281704 @default.
- W3204828170 hasLocation W32048281705 @default.
- W3204828170 hasOpenAccess W3204828170 @default.
- W3204828170 hasPrimaryLocation W32048281701 @default.
- W3204828170 hasRelatedWork W2550903298 @default.
- W3204828170 hasRelatedWork W2558399657 @default.
- W3204828170 hasRelatedWork W2765437846 @default.
- W3204828170 hasRelatedWork W2898781961 @default.
- W3204828170 hasRelatedWork W3048726935 @default.
- W3204828170 hasRelatedWork W3087330584 @default.
- W3204828170 hasRelatedWork W3179654005 @default.
- W3204828170 hasRelatedWork W3207890561 @default.