Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204831675> ?p ?o ?g. }
- W3204831675 endingPage "3849" @default.
- W3204831675 startingPage "3849" @default.
- W3204831675 abstract "In this paper, a deep learning long-short-term memory (LSTM) method is applied to the forecasting of the critical frequency of the ionosphere F2 layer (foF2). Hourly values of foF2 from 10 ionospheric stations in China and Australia (based on availability) from 2006 to 2019 are used for training and verifying. While 2015 and 2019 are exclusive for verifying the forecasting accuracy. The inputs of the LSTM model are sequential data for the previous values, which include local time (LT), day number, solar zenith angle, the sunspot number (SSN), the daily F10.7 solar flux, geomagnetic the Ap and Kp indices, geographic coordinates, neutral winds, and the observed value of foF2 at the previous moment. To evaluate the forecasting ability of the deep learning LSTM model, two different neural network forecasting models: a back-propagation neural network (BPNN) and a genetic algorithm optimized backpropagation neural network (GABP) were established for comparative analysis. The foF2 parameters were forecasted under geomagnetic quiet and geomagnetic disturbed conditions during solar activity maximum (2015) and minimum (2019), respectively. The forecasting results of these models are compared with those of the international reference ionosphere model (IRI2016) and the measurements. The diurnal and seasonal variations of foF2 for the 4 models were compared and analyzed from 8 selected verification stations. The forecasting results reveal that the deep learning LSTM model presents the optimal performance of all models in forecasting the time series of foF2, while the IRI2016 model has the poorest forecasting performance, and the BPNN model and GABP model are between two of them." @default.
- W3204831675 created "2021-10-11" @default.
- W3204831675 creator A5012094328 @default.
- W3204831675 creator A5019090966 @default.
- W3204831675 creator A5049515445 @default.
- W3204831675 creator A5059266023 @default.
- W3204831675 creator A5064219004 @default.
- W3204831675 creator A5070659482 @default.
- W3204831675 creator A5088635276 @default.
- W3204831675 date "2021-09-26" @default.
- W3204831675 modified "2023-10-18" @default.
- W3204831675 title "Forecasting Ionospheric foF2 Based on Deep Learning Method" @default.
- W3204831675 cites W152816722 @default.
- W3204831675 cites W1562254277 @default.
- W3204831675 cites W1562763515 @default.
- W3204831675 cites W1617841925 @default.
- W3204831675 cites W1649810948 @default.
- W3204831675 cites W1677464326 @default.
- W3204831675 cites W1940473517 @default.
- W3204831675 cites W1980986945 @default.
- W3204831675 cites W1986964719 @default.
- W3204831675 cites W1997279697 @default.
- W3204831675 cites W2002442300 @default.
- W3204831675 cites W2003112503 @default.
- W3204831675 cites W2005265905 @default.
- W3204831675 cites W2010809136 @default.
- W3204831675 cites W2019971658 @default.
- W3204831675 cites W2020246210 @default.
- W3204831675 cites W2024208287 @default.
- W3204831675 cites W2026791938 @default.
- W3204831675 cites W2031549655 @default.
- W3204831675 cites W2034445429 @default.
- W3204831675 cites W2035703304 @default.
- W3204831675 cites W2051669772 @default.
- W3204831675 cites W2070100243 @default.
- W3204831675 cites W2074388868 @default.
- W3204831675 cites W2091089077 @default.
- W3204831675 cites W2098545770 @default.
- W3204831675 cites W2107443517 @default.
- W3204831675 cites W2116198270 @default.
- W3204831675 cites W2124567640 @default.
- W3204831675 cites W2125954285 @default.
- W3204831675 cites W2130372754 @default.
- W3204831675 cites W2142712932 @default.
- W3204831675 cites W2161289687 @default.
- W3204831675 cites W2323435167 @default.
- W3204831675 cites W2325142256 @default.
- W3204831675 cites W2588308723 @default.
- W3204831675 cites W2911430976 @default.
- W3204831675 cites W2911446427 @default.
- W3204831675 cites W2922173433 @default.
- W3204831675 cites W3019810770 @default.
- W3204831675 cites W3025313534 @default.
- W3204831675 cites W3107879521 @default.
- W3204831675 doi "https://doi.org/10.3390/rs13193849" @default.
- W3204831675 hasPublicationYear "2021" @default.
- W3204831675 type Work @default.
- W3204831675 sameAs 3204831675 @default.
- W3204831675 citedByCount "7" @default.
- W3204831675 countsByYear W32048316752022 @default.
- W3204831675 countsByYear W32048316752023 @default.
- W3204831675 crossrefType "journal-article" @default.
- W3204831675 hasAuthorship W3204831675A5012094328 @default.
- W3204831675 hasAuthorship W3204831675A5019090966 @default.
- W3204831675 hasAuthorship W3204831675A5049515445 @default.
- W3204831675 hasAuthorship W3204831675A5059266023 @default.
- W3204831675 hasAuthorship W3204831675A5064219004 @default.
- W3204831675 hasAuthorship W3204831675A5070659482 @default.
- W3204831675 hasAuthorship W3204831675A5088635276 @default.
- W3204831675 hasBestOaLocation W32048316751 @default.
- W3204831675 hasConcept C115260700 @default.
- W3204831675 hasConcept C116403925 @default.
- W3204831675 hasConcept C121332964 @default.
- W3204831675 hasConcept C127313418 @default.
- W3204831675 hasConcept C153294291 @default.
- W3204831675 hasConcept C154945302 @default.
- W3204831675 hasConcept C155032097 @default.
- W3204831675 hasConcept C165391973 @default.
- W3204831675 hasConcept C176379880 @default.
- W3204831675 hasConcept C199635899 @default.
- W3204831675 hasConcept C205649164 @default.
- W3204831675 hasConcept C2776573159 @default.
- W3204831675 hasConcept C2777966019 @default.
- W3204831675 hasConcept C39432304 @default.
- W3204831675 hasConcept C41008148 @default.
- W3204831675 hasConcept C50644808 @default.
- W3204831675 hasConcept C62520636 @default.
- W3204831675 hasConcept C62649853 @default.
- W3204831675 hasConcept C8058405 @default.
- W3204831675 hasConcept C87635042 @default.
- W3204831675 hasConceptScore W3204831675C115260700 @default.
- W3204831675 hasConceptScore W3204831675C116403925 @default.
- W3204831675 hasConceptScore W3204831675C121332964 @default.
- W3204831675 hasConceptScore W3204831675C127313418 @default.
- W3204831675 hasConceptScore W3204831675C153294291 @default.
- W3204831675 hasConceptScore W3204831675C154945302 @default.
- W3204831675 hasConceptScore W3204831675C155032097 @default.
- W3204831675 hasConceptScore W3204831675C165391973 @default.