Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204844366> ?p ?o ?g. }
- W3204844366 abstract "Particle filtering is used to compute nonlinear estimates of complex systems. It samples trajectories from a chosen distribution and computes the estimate as a weighted average of them. Easy-to-sample distributions often lead to degenerate samples where only one trajectory carries all the weight, negatively affecting the resulting performance of the estimate. While much research has been done on the design of appropriate sampling distributions that would lead to controlled degeneracy, in this paper our objective is to learn sampling distributions. Leveraging the framework of algorithm unrolling, we model the sampling distribution as a multivariate normal, and we use neural networks to learn both the mean and the covariance. We carry out unsupervised training of the model to minimize weight degeneracy, relying only on the observed measurements of the system. We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios." @default.
- W3204844366 created "2021-10-11" @default.
- W3204844366 creator A5012007074 @default.
- W3204844366 creator A5049808645 @default.
- W3204844366 creator A5069506165 @default.
- W3204844366 creator A5072713767 @default.
- W3204844366 date "2022-05-23" @default.
- W3204844366 modified "2023-09-27" @default.
- W3204844366 title "Unrolling Particles: Unsupervised Learning of Sampling Distributions" @default.
- W3204844366 cites W2126736494 @default.
- W3204844366 cites W2808157751 @default.
- W3204844366 cites W2903008802 @default.
- W3204844366 cites W2938895217 @default.
- W3204844366 cites W2963371290 @default.
- W3204844366 cites W2982582821 @default.
- W3204844366 cites W2998415999 @default.
- W3204844366 cites W3011730771 @default.
- W3204844366 cites W3128358417 @default.
- W3204844366 cites W3131289200 @default.
- W3204844366 cites W3133902371 @default.
- W3204844366 cites W3152787073 @default.
- W3204844366 cites W3173393923 @default.
- W3204844366 cites W3176582960 @default.
- W3204844366 cites W3176621969 @default.
- W3204844366 cites W3197820238 @default.
- W3204844366 cites W4244486013 @default.
- W3204844366 cites W4255133955 @default.
- W3204844366 doi "https://doi.org/10.1109/icassp43922.2022.9747290" @default.
- W3204844366 hasPublicationYear "2022" @default.
- W3204844366 type Work @default.
- W3204844366 sameAs 3204844366 @default.
- W3204844366 citedByCount "1" @default.
- W3204844366 countsByYear W32048443662022 @default.
- W3204844366 crossrefType "proceedings-article" @default.
- W3204844366 hasAuthorship W3204844366A5012007074 @default.
- W3204844366 hasAuthorship W3204844366A5049808645 @default.
- W3204844366 hasAuthorship W3204844366A5069506165 @default.
- W3204844366 hasAuthorship W3204844366A5072713767 @default.
- W3204844366 hasBestOaLocation W32048443662 @default.
- W3204844366 hasConcept C105795698 @default.
- W3204844366 hasConcept C106131492 @default.
- W3204844366 hasConcept C11413529 @default.
- W3204844366 hasConcept C114614502 @default.
- W3204844366 hasConcept C121332964 @default.
- W3204844366 hasConcept C1276947 @default.
- W3204844366 hasConcept C13662910 @default.
- W3204844366 hasConcept C140779682 @default.
- W3204844366 hasConcept C159985019 @default.
- W3204844366 hasConcept C167723999 @default.
- W3204844366 hasConcept C178650346 @default.
- W3204844366 hasConcept C192562407 @default.
- W3204844366 hasConcept C19499675 @default.
- W3204844366 hasConcept C204323151 @default.
- W3204844366 hasConcept C2777727622 @default.
- W3204844366 hasConcept C31972630 @default.
- W3204844366 hasConcept C33923547 @default.
- W3204844366 hasConcept C41008148 @default.
- W3204844366 hasConcept C52740198 @default.
- W3204844366 hasConcept C60644358 @default.
- W3204844366 hasConcept C74193536 @default.
- W3204844366 hasConcept C86803240 @default.
- W3204844366 hasConceptScore W3204844366C105795698 @default.
- W3204844366 hasConceptScore W3204844366C106131492 @default.
- W3204844366 hasConceptScore W3204844366C11413529 @default.
- W3204844366 hasConceptScore W3204844366C114614502 @default.
- W3204844366 hasConceptScore W3204844366C121332964 @default.
- W3204844366 hasConceptScore W3204844366C1276947 @default.
- W3204844366 hasConceptScore W3204844366C13662910 @default.
- W3204844366 hasConceptScore W3204844366C140779682 @default.
- W3204844366 hasConceptScore W3204844366C159985019 @default.
- W3204844366 hasConceptScore W3204844366C167723999 @default.
- W3204844366 hasConceptScore W3204844366C178650346 @default.
- W3204844366 hasConceptScore W3204844366C192562407 @default.
- W3204844366 hasConceptScore W3204844366C19499675 @default.
- W3204844366 hasConceptScore W3204844366C204323151 @default.
- W3204844366 hasConceptScore W3204844366C2777727622 @default.
- W3204844366 hasConceptScore W3204844366C31972630 @default.
- W3204844366 hasConceptScore W3204844366C33923547 @default.
- W3204844366 hasConceptScore W3204844366C41008148 @default.
- W3204844366 hasConceptScore W3204844366C52740198 @default.
- W3204844366 hasConceptScore W3204844366C60644358 @default.
- W3204844366 hasConceptScore W3204844366C74193536 @default.
- W3204844366 hasConceptScore W3204844366C86803240 @default.
- W3204844366 hasLocation W32048443661 @default.
- W3204844366 hasLocation W32048443662 @default.
- W3204844366 hasOpenAccess W3204844366 @default.
- W3204844366 hasPrimaryLocation W32048443661 @default.
- W3204844366 hasRelatedWork W1606274310 @default.
- W3204844366 hasRelatedWork W2018632396 @default.
- W3204844366 hasRelatedWork W2774769176 @default.
- W3204844366 hasRelatedWork W2799098363 @default.
- W3204844366 hasRelatedWork W2884535015 @default.
- W3204844366 hasRelatedWork W3204844366 @default.
- W3204844366 hasRelatedWork W3206336800 @default.
- W3204844366 hasRelatedWork W4286900966 @default.
- W3204844366 hasRelatedWork W4286909117 @default.
- W3204844366 hasRelatedWork W4323566061 @default.
- W3204844366 isParatext "false" @default.
- W3204844366 isRetracted "false" @default.
- W3204844366 magId "3204844366" @default.