Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204861474> ?p ?o ?g. }
- W3204861474 endingPage "22" @default.
- W3204861474 startingPage "1" @default.
- W3204861474 abstract "This paper deals with a simple but efficient method for detection of deadly malignant melanoma with optimized hand-crafted feature sets selected by three alternative metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Simulated Annealing (SA). Total 1898 number of features relating to lesion shapes, colors and textures are extracted from each of the 170 non-dermoscopy camera images of the popular MED-NODE dataset. This large feature set is then optimized and the number of features is reduced to up-to the range of single digit using metaheuristic algorithms as feature selector. Two well-known supervised classifiers, i.e. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used to classify malignant and benign lesions. The best classification accuracy result found by this method is 87.69% with only 7 features selected by PSO using ANN classifier which is far better than the results found in the literature so far." @default.
- W3204861474 created "2021-10-11" @default.
- W3204861474 creator A5010247508 @default.
- W3204861474 creator A5028187317 @default.
- W3204861474 creator A5055639467 @default.
- W3204861474 date "2021-10-08" @default.
- W3204861474 modified "2023-10-18" @default.
- W3204861474 title "Melanoma Detection From Lesion Images Using Optimized Features Selected by Metaheuristic Algorithms" @default.
- W3204861474 cites W1498436455 @default.
- W3204861474 cites W1859314164 @default.
- W3204861474 cites W1990205028 @default.
- W3204861474 cites W2002507614 @default.
- W3204861474 cites W2013205100 @default.
- W3204861474 cites W2044465660 @default.
- W3204861474 cites W2051857685 @default.
- W3204861474 cites W2070188654 @default.
- W3204861474 cites W2107941094 @default.
- W3204861474 cites W2127227873 @default.
- W3204861474 cites W2133059825 @default.
- W3204861474 cites W2144854846 @default.
- W3204861474 cites W2152195021 @default.
- W3204861474 cites W2166992393 @default.
- W3204861474 cites W2282752563 @default.
- W3204861474 cites W2303949857 @default.
- W3204861474 cites W2532477205 @default.
- W3204861474 cites W2535484514 @default.
- W3204861474 cites W2581082771 @default.
- W3204861474 cites W2616823333 @default.
- W3204861474 cites W2618464855 @default.
- W3204861474 cites W2749477451 @default.
- W3204861474 cites W2790636941 @default.
- W3204861474 cites W2895302468 @default.
- W3204861474 cites W2897554828 @default.
- W3204861474 cites W2910964255 @default.
- W3204861474 cites W2911841305 @default.
- W3204861474 cites W2913790348 @default.
- W3204861474 cites W2917303411 @default.
- W3204861474 cites W2917573535 @default.
- W3204861474 cites W2921597936 @default.
- W3204861474 cites W2963059730 @default.
- W3204861474 cites W2964240917 @default.
- W3204861474 cites W3015172677 @default.
- W3204861474 cites W4239510810 @default.
- W3204861474 cites W4250240360 @default.
- W3204861474 cites W76120228 @default.
- W3204861474 doi "https://doi.org/10.4018/ijhisi.288542" @default.
- W3204861474 hasPublicationYear "2021" @default.
- W3204861474 type Work @default.
- W3204861474 sameAs 3204861474 @default.
- W3204861474 citedByCount "0" @default.
- W3204861474 crossrefType "journal-article" @default.
- W3204861474 hasAuthorship W3204861474A5010247508 @default.
- W3204861474 hasAuthorship W3204861474A5028187317 @default.
- W3204861474 hasAuthorship W3204861474A5055639467 @default.
- W3204861474 hasBestOaLocation W32048614741 @default.
- W3204861474 hasConcept C109718341 @default.
- W3204861474 hasConcept C11413529 @default.
- W3204861474 hasConcept C12267149 @default.
- W3204861474 hasConcept C126980161 @default.
- W3204861474 hasConcept C138885662 @default.
- W3204861474 hasConcept C153180895 @default.
- W3204861474 hasConcept C154945302 @default.
- W3204861474 hasConcept C2776401178 @default.
- W3204861474 hasConcept C40128228 @default.
- W3204861474 hasConcept C41008148 @default.
- W3204861474 hasConcept C41895202 @default.
- W3204861474 hasConcept C50644808 @default.
- W3204861474 hasConcept C85617194 @default.
- W3204861474 hasConcept C95623464 @default.
- W3204861474 hasConceptScore W3204861474C109718341 @default.
- W3204861474 hasConceptScore W3204861474C11413529 @default.
- W3204861474 hasConceptScore W3204861474C12267149 @default.
- W3204861474 hasConceptScore W3204861474C126980161 @default.
- W3204861474 hasConceptScore W3204861474C138885662 @default.
- W3204861474 hasConceptScore W3204861474C153180895 @default.
- W3204861474 hasConceptScore W3204861474C154945302 @default.
- W3204861474 hasConceptScore W3204861474C2776401178 @default.
- W3204861474 hasConceptScore W3204861474C40128228 @default.
- W3204861474 hasConceptScore W3204861474C41008148 @default.
- W3204861474 hasConceptScore W3204861474C41895202 @default.
- W3204861474 hasConceptScore W3204861474C50644808 @default.
- W3204861474 hasConceptScore W3204861474C85617194 @default.
- W3204861474 hasConceptScore W3204861474C95623464 @default.
- W3204861474 hasIssue "4" @default.
- W3204861474 hasLocation W32048614741 @default.
- W3204861474 hasOpenAccess W3204861474 @default.
- W3204861474 hasPrimaryLocation W32048614741 @default.
- W3204861474 hasRelatedWork W2041636156 @default.
- W3204861474 hasRelatedWork W2150847272 @default.
- W3204861474 hasRelatedWork W2160451891 @default.
- W3204861474 hasRelatedWork W2564189835 @default.
- W3204861474 hasRelatedWork W2753182558 @default.
- W3204861474 hasRelatedWork W3082258531 @default.
- W3204861474 hasRelatedWork W3157661022 @default.
- W3204861474 hasRelatedWork W4242764575 @default.
- W3204861474 hasRelatedWork W4291701050 @default.
- W3204861474 hasRelatedWork W2145506445 @default.
- W3204861474 hasVolume "16" @default.