Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204863881> ?p ?o ?g. }
- W3204863881 endingPage "107219" @default.
- W3204863881 startingPage "107219" @default.
- W3204863881 abstract "To optimize the irrigation scheduling of field crops to maximize irrigation water productivity requires expert knowledge of the crop development and its productive response to water deficit. Implementing this idea with commodities such as barley, whose current global profitability is low, and, more specifically, in areas where the availability of water resources for irrigation is limited, requires a proper decision support system. In this research, AquaCrop and MOPECO models were used to compute and compare both the crop-water production and irrigation water productivity functions generated by several irrigation strategies provided by each model for the typical irrigated crop barley grown in the area. Furthermore, we evaluated both models’ performance with a 3-year field experiment applying the methodology of optimized regulated deficit irrigation for limited volumes of irrigation water (ORDIL) in barley crop. The results obtained from the production functions show that gross irrigation water depths (GIWD) of more than 310 mm can be useful to attain the potential crop yield, depending on the criteria considered to generate the irrigation scheduling. However, with less GIWD available, the simulated barley development was subjected to water deficit, leading to a reduction in both crop yield and irrigation water productivity. Thus MOPECO simulated higher crop yields and irrigation water productivity values than those obtained by AquaCrop, being between 16% and 27% for crop yields and between 8.0% and 27.5% for irrigation water productivity, under similar GIWD levels. These differences are mainly due to how the irrigation strategies are outlined in the two models and the different evapotranspiration methodologies they deploy. Finally, both models provided performed appropriately in simulating final crop yield (errors lower than 0.50 × 103 kg ha−1), as well as canopy cover and aboveground biomass evolution, in the case of AquaCrop, whose goodness of fit indicators were close to 0.90 or higher. In terms of crop evapotranspiration, AquaCrop simulated a 12% higher average value than MOPECO. It can be concluded that both models are complementary, and their use will depend on the necessities of the final user. Thus, MOPECO offers a wider range of irrigation strategies, while AquaCrop offers a more detailed information about the physiological response of the crop during its development, being the results of the simulations accurate enough in both models." @default.
- W3204863881 created "2021-10-11" @default.
- W3204863881 creator A5006787331 @default.
- W3204863881 creator A5016876263 @default.
- W3204863881 creator A5036439367 @default.
- W3204863881 creator A5044240610 @default.
- W3204863881 creator A5067957886 @default.
- W3204863881 date "2021-12-01" @default.
- W3204863881 modified "2023-10-17" @default.
- W3204863881 title "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes" @default.
- W3204863881 cites W1801355156 @default.
- W3204863881 cites W1876659063 @default.
- W3204863881 cites W1964917023 @default.
- W3204863881 cites W1970004911 @default.
- W3204863881 cites W1976816164 @default.
- W3204863881 cites W1984096078 @default.
- W3204863881 cites W1985264945 @default.
- W3204863881 cites W1990833257 @default.
- W3204863881 cites W1993583381 @default.
- W3204863881 cites W1993906350 @default.
- W3204863881 cites W1994975670 @default.
- W3204863881 cites W2004385426 @default.
- W3204863881 cites W2006462893 @default.
- W3204863881 cites W2013601363 @default.
- W3204863881 cites W2019306000 @default.
- W3204863881 cites W2025821688 @default.
- W3204863881 cites W2031358864 @default.
- W3204863881 cites W2034384809 @default.
- W3204863881 cites W2040059324 @default.
- W3204863881 cites W2047096335 @default.
- W3204863881 cites W2047884674 @default.
- W3204863881 cites W2051663877 @default.
- W3204863881 cites W2055217093 @default.
- W3204863881 cites W2078556489 @default.
- W3204863881 cites W2080907281 @default.
- W3204863881 cites W2087079646 @default.
- W3204863881 cites W2101093127 @default.
- W3204863881 cites W2144260204 @default.
- W3204863881 cites W2145472361 @default.
- W3204863881 cites W2158245717 @default.
- W3204863881 cites W2162329321 @default.
- W3204863881 cites W2170593417 @default.
- W3204863881 cites W2204780902 @default.
- W3204863881 cites W2327099450 @default.
- W3204863881 cites W2345136356 @default.
- W3204863881 cites W2551220390 @default.
- W3204863881 cites W2605356435 @default.
- W3204863881 cites W2791741796 @default.
- W3204863881 cites W2883315486 @default.
- W3204863881 cites W2897636757 @default.
- W3204863881 cites W2913496681 @default.
- W3204863881 cites W2986521747 @default.
- W3204863881 cites W2990168774 @default.
- W3204863881 cites W2990560995 @default.
- W3204863881 cites W2995016835 @default.
- W3204863881 cites W3042884492 @default.
- W3204863881 cites W3128183671 @default.
- W3204863881 doi "https://doi.org/10.1016/j.agwat.2021.107219" @default.
- W3204863881 hasPublicationYear "2021" @default.
- W3204863881 type Work @default.
- W3204863881 sameAs 3204863881 @default.
- W3204863881 citedByCount "6" @default.
- W3204863881 countsByYear W32048638812022 @default.
- W3204863881 countsByYear W32048638812023 @default.
- W3204863881 crossrefType "journal-article" @default.
- W3204863881 hasAuthorship W3204863881A5006787331 @default.
- W3204863881 hasAuthorship W3204863881A5016876263 @default.
- W3204863881 hasAuthorship W3204863881A5036439367 @default.
- W3204863881 hasAuthorship W3204863881A5044240610 @default.
- W3204863881 hasAuthorship W3204863881A5067957886 @default.
- W3204863881 hasConcept C112077630 @default.
- W3204863881 hasConcept C126343540 @default.
- W3204863881 hasConcept C127413603 @default.
- W3204863881 hasConcept C136325355 @default.
- W3204863881 hasConcept C137580998 @default.
- W3204863881 hasConcept C139719470 @default.
- W3204863881 hasConcept C153823671 @default.
- W3204863881 hasConcept C162324750 @default.
- W3204863881 hasConcept C18903297 @default.
- W3204863881 hasConcept C195092306 @default.
- W3204863881 hasConcept C204983608 @default.
- W3204863881 hasConcept C2777589951 @default.
- W3204863881 hasConcept C39432304 @default.
- W3204863881 hasConcept C6557445 @default.
- W3204863881 hasConcept C86803240 @default.
- W3204863881 hasConcept C88463610 @default.
- W3204863881 hasConcept C88862950 @default.
- W3204863881 hasConceptScore W3204863881C112077630 @default.
- W3204863881 hasConceptScore W3204863881C126343540 @default.
- W3204863881 hasConceptScore W3204863881C127413603 @default.
- W3204863881 hasConceptScore W3204863881C136325355 @default.
- W3204863881 hasConceptScore W3204863881C137580998 @default.
- W3204863881 hasConceptScore W3204863881C139719470 @default.
- W3204863881 hasConceptScore W3204863881C153823671 @default.
- W3204863881 hasConceptScore W3204863881C162324750 @default.
- W3204863881 hasConceptScore W3204863881C18903297 @default.
- W3204863881 hasConceptScore W3204863881C195092306 @default.
- W3204863881 hasConceptScore W3204863881C204983608 @default.