Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204863995> ?p ?o ?g. }
- W3204863995 endingPage "1357" @default.
- W3204863995 startingPage "1357" @default.
- W3204863995 abstract "Interventional neuroradiology is characterized by engineering- and experience-driven device development with design improvements every few months. However, clinical validation of these new devices requires lengthy and expensive randomized controlled trials. This contribution proposes a machine learning-based in silico study design to evaluate new devices more quickly with a small sample size. Acute diffusion- and perfusion-weighted MRI, segmented one-week follow-up imaging, and clinical variables were available for 90 acute ischemic stroke patients. Three treatment option-specific random forest models were trained to predict the one-week follow-up lesion segmentation for (1) patients successfully recanalized using intra-arterial mechanical thrombectomy, (2) patients successfully recanalized using intravenous thrombolysis, and (3) non-recanalizing patients as an analogue for conservative treatment for each patient in the sample, independent of the true group membership. A repeated-measures analysis of the three predicted follow-up lesions for each patient revealed significantly larger lesions for the non-recanalizing group compared to the successful intravenous thrombolysis treatment group, which in turn showed significantly larger lesions compared to the successful mechanical thrombectomy treatment group (p < 0.001). A groupwise comparison of the true follow-up lesions for the three treatment options showed the same trend but did not reach statistical significance (p = 0.19). We conclude that the proposed machine learning-based in silico trial design leads to clinically feasible results and can support new efficacy studies by providing additional power and potential early intermediate results." @default.
- W3204863995 created "2021-10-11" @default.
- W3204863995 creator A5040728822 @default.
- W3204863995 creator A5051753610 @default.
- W3204863995 creator A5061175108 @default.
- W3204863995 creator A5079008873 @default.
- W3204863995 date "2021-09-29" @default.
- W3204863995 modified "2023-09-25" @default.
- W3204863995 title "Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using In Silico Modeling Based on Machine Learning: A Proof-of-Principle" @default.
- W3204863995 cites W1505527646 @default.
- W3204863995 cites W1834758930 @default.
- W3204863995 cites W1976827073 @default.
- W3204863995 cites W1980249915 @default.
- W3204863995 cites W1999418705 @default.
- W3204863995 cites W2009049939 @default.
- W3204863995 cites W2018301867 @default.
- W3204863995 cites W2018577646 @default.
- W3204863995 cites W2019714818 @default.
- W3204863995 cites W2026904620 @default.
- W3204863995 cites W2037399775 @default.
- W3204863995 cites W2048309435 @default.
- W3204863995 cites W2071572823 @default.
- W3204863995 cites W2080230062 @default.
- W3204863995 cites W2081822490 @default.
- W3204863995 cites W2106156672 @default.
- W3204863995 cites W2125198966 @default.
- W3204863995 cites W2139621750 @default.
- W3204863995 cites W2144902600 @default.
- W3204863995 cites W2157602287 @default.
- W3204863995 cites W2167442059 @default.
- W3204863995 cites W2171058244 @default.
- W3204863995 cites W2277258071 @default.
- W3204863995 cites W2292308933 @default.
- W3204863995 cites W2300046745 @default.
- W3204863995 cites W2792588444 @default.
- W3204863995 cites W2794391878 @default.
- W3204863995 cites W2884797508 @default.
- W3204863995 cites W2888910101 @default.
- W3204863995 cites W2889708219 @default.
- W3204863995 cites W2890354008 @default.
- W3204863995 cites W2901313129 @default.
- W3204863995 cites W2913705661 @default.
- W3204863995 cites W2921756627 @default.
- W3204863995 cites W2937638023 @default.
- W3204863995 cites W2966622305 @default.
- W3204863995 cites W2967027042 @default.
- W3204863995 cites W2972664246 @default.
- W3204863995 cites W2982513140 @default.
- W3204863995 cites W2993044194 @default.
- W3204863995 cites W3002791056 @default.
- W3204863995 cites W3006349194 @default.
- W3204863995 cites W3007594181 @default.
- W3204863995 cites W3010687358 @default.
- W3204863995 cites W3029624410 @default.
- W3204863995 cites W3033716865 @default.
- W3204863995 cites W3049708324 @default.
- W3204863995 cites W3087003429 @default.
- W3204863995 cites W3087376334 @default.
- W3204863995 cites W3091943846 @default.
- W3204863995 cites W3093659845 @default.
- W3204863995 cites W3163436771 @default.
- W3204863995 cites W3178835531 @default.
- W3204863995 cites W4210973470 @default.
- W3204863995 doi "https://doi.org/10.3390/biomedicines9101357" @default.
- W3204863995 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8533087" @default.
- W3204863995 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34680474" @default.
- W3204863995 hasPublicationYear "2021" @default.
- W3204863995 type Work @default.
- W3204863995 sameAs 3204863995 @default.
- W3204863995 citedByCount "4" @default.
- W3204863995 countsByYear W32048639952021 @default.
- W3204863995 countsByYear W32048639952022 @default.
- W3204863995 crossrefType "journal-article" @default.
- W3204863995 hasAuthorship W3204863995A5040728822 @default.
- W3204863995 hasAuthorship W3204863995A5051753610 @default.
- W3204863995 hasAuthorship W3204863995A5061175108 @default.
- W3204863995 hasAuthorship W3204863995A5079008873 @default.
- W3204863995 hasBestOaLocation W32048639951 @default.
- W3204863995 hasConcept C105795698 @default.
- W3204863995 hasConcept C111919701 @default.
- W3204863995 hasConcept C118552586 @default.
- W3204863995 hasConcept C124978682 @default.
- W3204863995 hasConcept C126322002 @default.
- W3204863995 hasConcept C126838900 @default.
- W3204863995 hasConcept C127413603 @default.
- W3204863995 hasConcept C129848803 @default.
- W3204863995 hasConcept C141071460 @default.
- W3204863995 hasConcept C16568411 @default.
- W3204863995 hasConcept C168563851 @default.
- W3204863995 hasConcept C2779581417 @default.
- W3204863995 hasConcept C2779889316 @default.
- W3204863995 hasConcept C2780645631 @default.
- W3204863995 hasConcept C33923547 @default.
- W3204863995 hasConcept C41008148 @default.
- W3204863995 hasConcept C500558357 @default.
- W3204863995 hasConcept C535046627 @default.
- W3204863995 hasConcept C71924100 @default.
- W3204863995 hasConcept C78519656 @default.