Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204865406> ?p ?o ?g. }
- W3204865406 endingPage "537" @default.
- W3204865406 startingPage "529" @default.
- W3204865406 abstract "Traditionally, in vitro and in vivo methods are useful for estimating human pharmacokinetics (PK) parameters; however, it is impractical to perform these complex and expensive experiments on a large number of compounds. The integration of publicly available chemical, or medical Big Data and artificial intelligence (AI)-based approaches led to qualitative and quantitative prediction of human PK of a candidate drug. However, predicting drug response with these approaches is challenging, partially because of the adaptation of algorithmic and limitations related to experimental data. In this report, we provide an overview of machine learning (ML)-based quantitative structure-activity relationship (QSAR) models used in the assessment or prediction of PK values as well as databases available for obtaining such data." @default.
- W3204865406 created "2021-10-11" @default.
- W3204865406 creator A5013455025 @default.
- W3204865406 creator A5052778864 @default.
- W3204865406 creator A5078682094 @default.
- W3204865406 creator A5080754692 @default.
- W3204865406 date "2022-02-01" @default.
- W3204865406 modified "2023-10-01" @default.
- W3204865406 title "A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges" @default.
- W3204865406 cites W1865339649 @default.
- W3204865406 cites W1932157650 @default.
- W3204865406 cites W1966598577 @default.
- W3204865406 cites W1972650408 @default.
- W3204865406 cites W1974361103 @default.
- W3204865406 cites W1983464445 @default.
- W3204865406 cites W2009313526 @default.
- W3204865406 cites W2009867031 @default.
- W3204865406 cites W2012929832 @default.
- W3204865406 cites W2028165836 @default.
- W3204865406 cites W2039250788 @default.
- W3204865406 cites W2052264066 @default.
- W3204865406 cites W2053717624 @default.
- W3204865406 cites W2057069496 @default.
- W3204865406 cites W2062205820 @default.
- W3204865406 cites W2083968585 @default.
- W3204865406 cites W2090947827 @default.
- W3204865406 cites W2096135367 @default.
- W3204865406 cites W2098449081 @default.
- W3204865406 cites W2099089564 @default.
- W3204865406 cites W2102932191 @default.
- W3204865406 cites W2117881268 @default.
- W3204865406 cites W2118630726 @default.
- W3204865406 cites W2128245586 @default.
- W3204865406 cites W2131326895 @default.
- W3204865406 cites W2131666270 @default.
- W3204865406 cites W2132047249 @default.
- W3204865406 cites W2168223217 @default.
- W3204865406 cites W2169237068 @default.
- W3204865406 cites W2218204925 @default.
- W3204865406 cites W2231654871 @default.
- W3204865406 cites W2263138261 @default.
- W3204865406 cites W2270474355 @default.
- W3204865406 cites W2407714643 @default.
- W3204865406 cites W2598961029 @default.
- W3204865406 cites W2756319398 @default.
- W3204865406 cites W2786209091 @default.
- W3204865406 cites W2805383067 @default.
- W3204865406 cites W2810023675 @default.
- W3204865406 cites W2892846700 @default.
- W3204865406 cites W2905674093 @default.
- W3204865406 cites W2912877386 @default.
- W3204865406 cites W2918342704 @default.
- W3204865406 cites W2920835902 @default.
- W3204865406 cites W2964208699 @default.
- W3204865406 cites W2968219050 @default.
- W3204865406 cites W2972497960 @default.
- W3204865406 cites W2977405829 @default.
- W3204865406 cites W3020578011 @default.
- W3204865406 cites W3022998913 @default.
- W3204865406 cites W3023042104 @default.
- W3204865406 cites W3023096250 @default.
- W3204865406 cites W3023154072 @default.
- W3204865406 cites W3073217148 @default.
- W3204865406 cites W3083191400 @default.
- W3204865406 cites W3086078626 @default.
- W3204865406 cites W3095013792 @default.
- W3204865406 cites W3110367110 @default.
- W3204865406 cites W3112240879 @default.
- W3204865406 cites W3134975174 @default.
- W3204865406 cites W4239082087 @default.
- W3204865406 cites W8127528 @default.
- W3204865406 doi "https://doi.org/10.1016/j.drudis.2021.09.013" @default.
- W3204865406 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34592448" @default.
- W3204865406 hasPublicationYear "2022" @default.
- W3204865406 type Work @default.
- W3204865406 sameAs 3204865406 @default.
- W3204865406 citedByCount "10" @default.
- W3204865406 countsByYear W32048654062022 @default.
- W3204865406 countsByYear W32048654062023 @default.
- W3204865406 crossrefType "journal-article" @default.
- W3204865406 hasAuthorship W3204865406A5013455025 @default.
- W3204865406 hasAuthorship W3204865406A5052778864 @default.
- W3204865406 hasAuthorship W3204865406A5078682094 @default.
- W3204865406 hasAuthorship W3204865406A5080754692 @default.
- W3204865406 hasConcept C119857082 @default.
- W3204865406 hasConcept C124101348 @default.
- W3204865406 hasConcept C154945302 @default.
- W3204865406 hasConcept C164126121 @default.
- W3204865406 hasConcept C41008148 @default.
- W3204865406 hasConcept C60644358 @default.
- W3204865406 hasConcept C74187038 @default.
- W3204865406 hasConcept C86803240 @default.
- W3204865406 hasConceptScore W3204865406C119857082 @default.
- W3204865406 hasConceptScore W3204865406C124101348 @default.
- W3204865406 hasConceptScore W3204865406C154945302 @default.
- W3204865406 hasConceptScore W3204865406C164126121 @default.
- W3204865406 hasConceptScore W3204865406C41008148 @default.
- W3204865406 hasConceptScore W3204865406C60644358 @default.