Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204877369> ?p ?o ?g. }
- W3204877369 abstract "Building rooftop data are of importance in several urban applications and in natural disaster management. In contrast to traditional surveying and mapping, by using high spatial resolution aerial images, deep learning-based building rooftops extraction methods are efficient and accurate. Although more training data is preferred in deep learning-based tasks, the effect of data volume on building extraction models is underexplored. Therefore, the paper explores the impact of data volume on the performance of building rooftop extraction from very-high-spatial-resolution (VHSR) images using deep learning-based methods. To do so, we manually labelled 0.12m spatial resolution aerial images and perform a comparative analysis of models trained on datasets of different sizes using popular deep learning architectures for segmentation tasks, including Fully Convolutional Networks (FCN)-8s, U-Net and DeepLabv3+. The experiments showed that with more training data, algorithms converged faster and achieved higher accuracy, while better algorithms were able to better mitigate the lack of training data." @default.
- W3204877369 created "2021-10-11" @default.
- W3204877369 creator A5006763919 @default.
- W3204877369 creator A5007144110 @default.
- W3204877369 creator A5017266329 @default.
- W3204877369 creator A5021029596 @default.
- W3204877369 creator A5021293751 @default.
- W3204877369 creator A5022167049 @default.
- W3204877369 creator A5033279910 @default.
- W3204877369 creator A5034084187 @default.
- W3204877369 creator A5034166335 @default.
- W3204877369 creator A5034927486 @default.
- W3204877369 creator A5037028903 @default.
- W3204877369 creator A5042989803 @default.
- W3204877369 creator A5049403375 @default.
- W3204877369 creator A5049847095 @default.
- W3204877369 creator A5059190796 @default.
- W3204877369 creator A5061612965 @default.
- W3204877369 creator A5073397759 @default.
- W3204877369 creator A5080492904 @default.
- W3204877369 date "2021-03-16" @default.
- W3204877369 modified "2023-10-16" @default.
- W3204877369 title "The impact of data volume on performance of deep learning based building rooftop extraction using very high spatial resolution aerial images" @default.
- W3204877369 cites W1901129140 @default.
- W3204877369 cites W1903029394 @default.
- W3204877369 cites W1966411833 @default.
- W3204877369 cites W2173290281 @default.
- W3204877369 cites W2794187036 @default.
- W3204877369 cites W2964121744 @default.
- W3204877369 cites W2964309882 @default.
- W3204877369 cites W3000652771 @default.
- W3204877369 cites W3019847943 @default.
- W3204877369 cites W3033523448 @default.
- W3204877369 cites W3121754326 @default.
- W3204877369 doi "https://doi.org/10.48550/arxiv.2103.09300" @default.
- W3204877369 hasPublicationYear "2021" @default.
- W3204877369 type Work @default.
- W3204877369 sameAs 3204877369 @default.
- W3204877369 citedByCount "0" @default.
- W3204877369 crossrefType "posted-content" @default.
- W3204877369 hasAuthorship W3204877369A5006763919 @default.
- W3204877369 hasAuthorship W3204877369A5007144110 @default.
- W3204877369 hasAuthorship W3204877369A5017266329 @default.
- W3204877369 hasAuthorship W3204877369A5021029596 @default.
- W3204877369 hasAuthorship W3204877369A5021293751 @default.
- W3204877369 hasAuthorship W3204877369A5022167049 @default.
- W3204877369 hasAuthorship W3204877369A5033279910 @default.
- W3204877369 hasAuthorship W3204877369A5034084187 @default.
- W3204877369 hasAuthorship W3204877369A5034166335 @default.
- W3204877369 hasAuthorship W3204877369A5034927486 @default.
- W3204877369 hasAuthorship W3204877369A5037028903 @default.
- W3204877369 hasAuthorship W3204877369A5042989803 @default.
- W3204877369 hasAuthorship W3204877369A5049403375 @default.
- W3204877369 hasAuthorship W3204877369A5049847095 @default.
- W3204877369 hasAuthorship W3204877369A5059190796 @default.
- W3204877369 hasAuthorship W3204877369A5061612965 @default.
- W3204877369 hasAuthorship W3204877369A5073397759 @default.
- W3204877369 hasAuthorship W3204877369A5080492904 @default.
- W3204877369 hasBestOaLocation W32048773691 @default.
- W3204877369 hasConcept C108583219 @default.
- W3204877369 hasConcept C115961682 @default.
- W3204877369 hasConcept C119857082 @default.
- W3204877369 hasConcept C121332964 @default.
- W3204877369 hasConcept C124101348 @default.
- W3204877369 hasConcept C154945302 @default.
- W3204877369 hasConcept C159620131 @default.
- W3204877369 hasConcept C185592680 @default.
- W3204877369 hasConcept C205372480 @default.
- W3204877369 hasConcept C20556612 @default.
- W3204877369 hasConcept C205649164 @default.
- W3204877369 hasConcept C2776429412 @default.
- W3204877369 hasConcept C2987819851 @default.
- W3204877369 hasConcept C3020199158 @default.
- W3204877369 hasConcept C31972630 @default.
- W3204877369 hasConcept C41008148 @default.
- W3204877369 hasConcept C43617362 @default.
- W3204877369 hasConcept C4725764 @default.
- W3204877369 hasConcept C62520636 @default.
- W3204877369 hasConcept C62649853 @default.
- W3204877369 hasConcept C89600930 @default.
- W3204877369 hasConceptScore W3204877369C108583219 @default.
- W3204877369 hasConceptScore W3204877369C115961682 @default.
- W3204877369 hasConceptScore W3204877369C119857082 @default.
- W3204877369 hasConceptScore W3204877369C121332964 @default.
- W3204877369 hasConceptScore W3204877369C124101348 @default.
- W3204877369 hasConceptScore W3204877369C154945302 @default.
- W3204877369 hasConceptScore W3204877369C159620131 @default.
- W3204877369 hasConceptScore W3204877369C185592680 @default.
- W3204877369 hasConceptScore W3204877369C205372480 @default.
- W3204877369 hasConceptScore W3204877369C20556612 @default.
- W3204877369 hasConceptScore W3204877369C205649164 @default.
- W3204877369 hasConceptScore W3204877369C2776429412 @default.
- W3204877369 hasConceptScore W3204877369C2987819851 @default.
- W3204877369 hasConceptScore W3204877369C3020199158 @default.
- W3204877369 hasConceptScore W3204877369C31972630 @default.
- W3204877369 hasConceptScore W3204877369C41008148 @default.
- W3204877369 hasConceptScore W3204877369C43617362 @default.
- W3204877369 hasConceptScore W3204877369C4725764 @default.
- W3204877369 hasConceptScore W3204877369C62520636 @default.
- W3204877369 hasConceptScore W3204877369C62649853 @default.