Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204896999> ?p ?o ?g. }
- W3204896999 abstract "Simulations of flow fields around microscopic objects typically require methods that both solve the Navier–Stokes equations and also include thermal fluctuations. One such method popular in the field of soft-matter physics is the particle-based simulation method of multi-particle collision dynamics (MPCD). However, in contrast to the typically incompressible real fluid, the fluid of the traditional MPCD methods obeys the ideal-gas equation of state. This can be problematic because most fluid properties strongly depend on the fluid density. In a recent article, we proposed an extended MPCD algorithm and derived its non-ideal equation of state and an expression for the viscosity. In the present work, we demonstrate its accuracy and efficiency for the simulations of the flow fields of single squirmers and of the collective dynamics of squirmer rods. We use two exemplary squirmer-rod systems for which we compare the outcome of the extended MPCD method to the well-established MPCD version with an Andersen thermostat. First, we explicitly demonstrate the reduced compressibility of the MPCD fluid in a cluster of squirmer rods. Second, for shorter rods, we show the interesting result that in simulations with the extended MPCD method, dynamic swarms are more pronounced and have a higher polar order. Finally, we present a thorough study of the state diagram of squirmer rods moving in the center plane of a Hele-Shaw geometry. From a small to large aspect ratio and density, we observe a disordered state, dynamic swarms, a single swarm, and a jammed cluster, which we characterize accordingly." @default.
- W3204896999 created "2021-10-11" @default.
- W3204896999 creator A5053032829 @default.
- W3204896999 creator A5081941349 @default.
- W3204896999 date "2021-10-06" @default.
- W3204896999 modified "2023-10-01" @default.
- W3204896999 title "Multi-particle collision dynamics with a non-ideal equation of state. II. Collective dynamics of elongated squirmer rods" @default.
- W3204896999 cites W1573559725 @default.
- W3204896999 cites W1660598416 @default.
- W3204896999 cites W1845618662 @default.
- W3204896999 cites W1966114097 @default.
- W3204896999 cites W1973786800 @default.
- W3204896999 cites W1975247487 @default.
- W3204896999 cites W1975467090 @default.
- W3204896999 cites W1980803050 @default.
- W3204896999 cites W1981410769 @default.
- W3204896999 cites W1984413478 @default.
- W3204896999 cites W1987050044 @default.
- W3204896999 cites W1987365226 @default.
- W3204896999 cites W1996159204 @default.
- W3204896999 cites W1997445226 @default.
- W3204896999 cites W2000883601 @default.
- W3204896999 cites W2002719769 @default.
- W3204896999 cites W2005751229 @default.
- W3204896999 cites W2008476194 @default.
- W3204896999 cites W2009634008 @default.
- W3204896999 cites W2015410655 @default.
- W3204896999 cites W2016331411 @default.
- W3204896999 cites W2020828490 @default.
- W3204896999 cites W2021187668 @default.
- W3204896999 cites W2022886492 @default.
- W3204896999 cites W2024256547 @default.
- W3204896999 cites W2025005952 @default.
- W3204896999 cites W2025910354 @default.
- W3204896999 cites W2035944347 @default.
- W3204896999 cites W2042898119 @default.
- W3204896999 cites W2044371211 @default.
- W3204896999 cites W2045780635 @default.
- W3204896999 cites W2051420271 @default.
- W3204896999 cites W2056707942 @default.
- W3204896999 cites W2059003431 @default.
- W3204896999 cites W2060933310 @default.
- W3204896999 cites W2062188657 @default.
- W3204896999 cites W2063134919 @default.
- W3204896999 cites W2067281960 @default.
- W3204896999 cites W2074574519 @default.
- W3204896999 cites W2076602180 @default.
- W3204896999 cites W2078669059 @default.
- W3204896999 cites W2081710846 @default.
- W3204896999 cites W2084763090 @default.
- W3204896999 cites W2096052363 @default.
- W3204896999 cites W2106150869 @default.
- W3204896999 cites W2127294667 @default.
- W3204896999 cites W2136883667 @default.
- W3204896999 cites W2142293622 @default.
- W3204896999 cites W2152289716 @default.
- W3204896999 cites W2162988630 @default.
- W3204896999 cites W2239779639 @default.
- W3204896999 cites W2264908508 @default.
- W3204896999 cites W2277966656 @default.
- W3204896999 cites W2319607254 @default.
- W3204896999 cites W2329500652 @default.
- W3204896999 cites W2467523453 @default.
- W3204896999 cites W2520627537 @default.
- W3204896999 cites W2523776617 @default.
- W3204896999 cites W2587518928 @default.
- W3204896999 cites W2626026163 @default.
- W3204896999 cites W2746997334 @default.
- W3204896999 cites W2760821124 @default.
- W3204896999 cites W2770651861 @default.
- W3204896999 cites W2780855272 @default.
- W3204896999 cites W2785014264 @default.
- W3204896999 cites W2786862505 @default.
- W3204896999 cites W2794155095 @default.
- W3204896999 cites W2803571554 @default.
- W3204896999 cites W2897566128 @default.
- W3204896999 cites W2905252751 @default.
- W3204896999 cites W2909777778 @default.
- W3204896999 cites W2910911082 @default.
- W3204896999 cites W2954119784 @default.
- W3204896999 cites W2963040825 @default.
- W3204896999 cites W2963199623 @default.
- W3204896999 cites W2964271419 @default.
- W3204896999 cites W2964280855 @default.
- W3204896999 cites W3005856932 @default.
- W3204896999 cites W3012209796 @default.
- W3204896999 cites W3014214768 @default.
- W3204896999 cites W3023604700 @default.
- W3204896999 cites W3027705914 @default.
- W3204896999 cites W3037540848 @default.
- W3204896999 cites W3098044051 @default.
- W3204896999 cites W3098231892 @default.
- W3204896999 cites W3098436986 @default.
- W3204896999 cites W3098638371 @default.
- W3204896999 cites W3098764404 @default.
- W3204896999 cites W3098918126 @default.
- W3204896999 cites W3099266189 @default.
- W3204896999 cites W3099285974 @default.
- W3204896999 cites W3099606453 @default.
- W3204896999 cites W3101773022 @default.