Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204904178> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3204904178 endingPage "134064" @default.
- W3204904178 startingPage "134052" @default.
- W3204904178 abstract "Machine learning has recently started to gain the attention of cryptographic researchers, notably in block cipher cryptanalysis. Most of these machine learning-based approaches are black box attacks that are cipher-specific. Thus, more research is required to understand the capabilities and limitations of machine learning when being used to evaluate block cipher security. We contribute to this body of knowledge by investigating the capability of linear and nonlinear machine learning classifiers in evaluating block cipher security. We frame block cipher security evaluation as a classification problem, whereby the machine learning models attempt to classify a given block cipher output as secure or insecure based on the number of active S-boxes. We also train the machine learning models with common block cipher features such as truncated differences, the number of rounds, and permutation pattern. Various experiments were performed on small-scale (4-branch) generalized Feistel ciphers to identify the best performing machine learning model for the given security evaluation problem. Results show that nonlinear machine learning models outperform linear models, achieving a prediction accuracy of up to 93% when evaluating inputs from ciphers that they have seen before during training. When evaluating inputs from other unseen ciphers, nonlinear models again outperformed linear models with an accuracy of up to 71%. We then showcase the feasibility of our approach when used to evaluate a real-world 16-branch generalized Feistel cipher, TWINE. By training the best performing nonlinear classifiers (k-nearest neighbour and decision tree) using data from other similar ciphers, the nonlinear classifiers achieved a 74% accuracy when evaluating differential data generated from TWINE. In addition, the trained classifiers were capable of generalizing to a larger number of rounds than they were trained for. Our findings showcase the feasibility of using simple machine learning classifiers as a security evaluation tool to assess block cipher security." @default.
- W3204904178 created "2021-10-11" @default.
- W3204904178 creator A5015770512 @default.
- W3204904178 creator A5016101516 @default.
- W3204904178 creator A5033630348 @default.
- W3204904178 creator A5047161149 @default.
- W3204904178 creator A5068070930 @default.
- W3204904178 date "2021-01-01" @default.
- W3204904178 modified "2023-10-16" @default.
- W3204904178 title "Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes" @default.
- W3204904178 cites W1883151075 @default.
- W3204904178 cites W1949810609 @default.
- W3204904178 cites W2149552539 @default.
- W3204904178 cites W2158215699 @default.
- W3204904178 cites W2234576048 @default.
- W3204904178 cites W2403945119 @default.
- W3204904178 cites W2529580269 @default.
- W3204904178 cites W2542544036 @default.
- W3204904178 cites W2607638782 @default.
- W3204904178 cites W2784107021 @default.
- W3204904178 cites W2888096712 @default.
- W3204904178 cites W2888477236 @default.
- W3204904178 cites W2903010870 @default.
- W3204904178 cites W2910049226 @default.
- W3204904178 cites W2969001071 @default.
- W3204904178 cites W2997457247 @default.
- W3204904178 cites W2998202868 @default.
- W3204904178 cites W3000253464 @default.
- W3204904178 cites W3010369451 @default.
- W3204904178 cites W3043009053 @default.
- W3204904178 cites W3084142593 @default.
- W3204904178 cites W3113112958 @default.
- W3204904178 cites W3146780285 @default.
- W3204904178 cites W3159555774 @default.
- W3204904178 cites W3186182617 @default.
- W3204904178 cites W3207337090 @default.
- W3204904178 doi "https://doi.org/10.1109/access.2021.3116468" @default.
- W3204904178 hasPublicationYear "2021" @default.
- W3204904178 type Work @default.
- W3204904178 sameAs 3204904178 @default.
- W3204904178 citedByCount "5" @default.
- W3204904178 countsByYear W32049041782022 @default.
- W3204904178 countsByYear W32049041782023 @default.
- W3204904178 crossrefType "journal-article" @default.
- W3204904178 hasAuthorship W3204904178A5015770512 @default.
- W3204904178 hasAuthorship W3204904178A5016101516 @default.
- W3204904178 hasAuthorship W3204904178A5033630348 @default.
- W3204904178 hasAuthorship W3204904178A5047161149 @default.
- W3204904178 hasAuthorship W3204904178A5068070930 @default.
- W3204904178 hasBestOaLocation W32049041781 @default.
- W3204904178 hasConcept C106544461 @default.
- W3204904178 hasConcept C11413529 @default.
- W3204904178 hasConcept C119857082 @default.
- W3204904178 hasConcept C148730421 @default.
- W3204904178 hasConcept C154945302 @default.
- W3204904178 hasConcept C156529985 @default.
- W3204904178 hasConcept C178489894 @default.
- W3204904178 hasConcept C26517878 @default.
- W3204904178 hasConcept C2780221543 @default.
- W3204904178 hasConcept C38652104 @default.
- W3204904178 hasConcept C41008148 @default.
- W3204904178 hasConcept C41431624 @default.
- W3204904178 hasConceptScore W3204904178C106544461 @default.
- W3204904178 hasConceptScore W3204904178C11413529 @default.
- W3204904178 hasConceptScore W3204904178C119857082 @default.
- W3204904178 hasConceptScore W3204904178C148730421 @default.
- W3204904178 hasConceptScore W3204904178C154945302 @default.
- W3204904178 hasConceptScore W3204904178C156529985 @default.
- W3204904178 hasConceptScore W3204904178C178489894 @default.
- W3204904178 hasConceptScore W3204904178C26517878 @default.
- W3204904178 hasConceptScore W3204904178C2780221543 @default.
- W3204904178 hasConceptScore W3204904178C38652104 @default.
- W3204904178 hasConceptScore W3204904178C41008148 @default.
- W3204904178 hasConceptScore W3204904178C41431624 @default.
- W3204904178 hasFunder F4320325210 @default.
- W3204904178 hasLocation W32049041781 @default.
- W3204904178 hasOpenAccess W3204904178 @default.
- W3204904178 hasPrimaryLocation W32049041781 @default.
- W3204904178 hasRelatedWork W1562006174 @default.
- W3204904178 hasRelatedWork W2149265861 @default.
- W3204904178 hasRelatedWork W2273935489 @default.
- W3204904178 hasRelatedWork W2274979005 @default.
- W3204904178 hasRelatedWork W2365708481 @default.
- W3204904178 hasRelatedWork W2594752225 @default.
- W3204904178 hasRelatedWork W2782977475 @default.
- W3204904178 hasRelatedWork W2952717362 @default.
- W3204904178 hasRelatedWork W2977459078 @default.
- W3204904178 hasRelatedWork W3109072235 @default.
- W3204904178 hasVolume "9" @default.
- W3204904178 isParatext "false" @default.
- W3204904178 isRetracted "false" @default.
- W3204904178 magId "3204904178" @default.
- W3204904178 workType "article" @default.