Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204908710> ?p ?o ?g. }
- W3204908710 abstract "Abstract One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we propose a biologically plausible mechanistic model of the circuit. Our model predicts the ORN → LN synaptic weights found in the connectome and demonstrate that they reflect correlations in ORN activity patterns. Additionally, our model explains the relation between ORN → LN and LN – LN synaptic weight and the arising of different LN types. This global synaptic organization can autonomously arise through Hebbian plasticity, and thus allows the circuit to adapt to different environments in an unsupervised manner. Functionally, we propose LNs extract redundant input correlations and dampen them in ORNs, thus partially whitening and normalizing the stimulus representations in ORNs. Our work proposes a comprehensive framework to combine structure, activity, function, and learning, and uncovers a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Significance The brain represents information with patterns of neural activity. At the periphery, due to the properties of the external world and of encoding neurons, these patterns contain correlations, which are detrimental for stimulus discrimination. We study the peripheral olfactory neural circuit of the Drosophila larva, that preprocesses neural representations before relaying them to higher brain areas. A comprehensive understanding of this preprocessing is, however, lacking. Here, we propose a mechanistic and normative framework describing the function of the circuit and predict the circuit’s synaptic organization based on the circuit’s input neural activity. We show how the circuit can autonomously adapt to different environments, extracts stimulus features, and decorrelate and normalize input representations, which facilitates odor discrimination downstream." @default.
- W3204908710 created "2021-10-11" @default.
- W3204908710 creator A5018876700 @default.
- W3204908710 creator A5023195984 @default.
- W3204908710 creator A5062874541 @default.
- W3204908710 date "2021-09-25" @default.
- W3204908710 modified "2023-09-26" @default.
- W3204908710 title "Normative and mechanistic model of an adaptive circuit for efficient encoding and feature extraction" @default.
- W3204908710 cites W1493428979 @default.
- W3204908710 cites W1504886279 @default.
- W3204908710 cites W1595965005 @default.
- W3204908710 cites W1630197489 @default.
- W3204908710 cites W1835067015 @default.
- W3204908710 cites W1967036516 @default.
- W3204908710 cites W1971653450 @default.
- W3204908710 cites W1989621138 @default.
- W3204908710 cites W2000377855 @default.
- W3204908710 cites W2005811042 @default.
- W3204908710 cites W2007322879 @default.
- W3204908710 cites W2009156797 @default.
- W3204908710 cites W2010736791 @default.
- W3204908710 cites W2025539936 @default.
- W3204908710 cites W2028281435 @default.
- W3204908710 cites W2030318346 @default.
- W3204908710 cites W2037395945 @default.
- W3204908710 cites W2038506683 @default.
- W3204908710 cites W2042925217 @default.
- W3204908710 cites W2055792811 @default.
- W3204908710 cites W2058483899 @default.
- W3204908710 cites W2081986958 @default.
- W3204908710 cites W2093514926 @default.
- W3204908710 cites W2105464873 @default.
- W3204908710 cites W2122925692 @default.
- W3204908710 cites W2127869243 @default.
- W3204908710 cites W2137234026 @default.
- W3204908710 cites W2138260451 @default.
- W3204908710 cites W2146158975 @default.
- W3204908710 cites W2151035455 @default.
- W3204908710 cites W2151351982 @default.
- W3204908710 cites W2158976454 @default.
- W3204908710 cites W2159271282 @default.
- W3204908710 cites W2161300180 @default.
- W3204908710 cites W2170319235 @default.
- W3204908710 cites W2170359674 @default.
- W3204908710 cites W2188333210 @default.
- W3204908710 cites W2263039277 @default.
- W3204908710 cites W2263369639 @default.
- W3204908710 cites W2336477404 @default.
- W3204908710 cites W2523611069 @default.
- W3204908710 cites W2571305441 @default.
- W3204908710 cites W2619970632 @default.
- W3204908710 cites W2735683573 @default.
- W3204908710 cites W2751847892 @default.
- W3204908710 cites W2908638243 @default.
- W3204908710 cites W2911638064 @default.
- W3204908710 cites W2949152168 @default.
- W3204908710 cites W2950291885 @default.
- W3204908710 cites W3016007634 @default.
- W3204908710 cites W4233403024 @default.
- W3204908710 cites W902799380 @default.
- W3204908710 doi "https://doi.org/10.1101/2021.09.24.461723" @default.
- W3204908710 hasPublicationYear "2021" @default.
- W3204908710 type Work @default.
- W3204908710 sameAs 3204908710 @default.
- W3204908710 citedByCount "2" @default.
- W3204908710 countsByYear W32049087102022 @default.
- W3204908710 countsByYear W32049087102023 @default.
- W3204908710 crossrefType "posted-content" @default.
- W3204908710 hasAuthorship W3204908710A5018876700 @default.
- W3204908710 hasAuthorship W3204908710A5023195984 @default.
- W3204908710 hasAuthorship W3204908710A5062874541 @default.
- W3204908710 hasBestOaLocation W32049087101 @default.
- W3204908710 hasConcept C111437709 @default.
- W3204908710 hasConcept C153180895 @default.
- W3204908710 hasConcept C154945302 @default.
- W3204908710 hasConcept C15744967 @default.
- W3204908710 hasConcept C169760540 @default.
- W3204908710 hasConcept C180747234 @default.
- W3204908710 hasConcept C201792869 @default.
- W3204908710 hasConcept C2779918689 @default.
- W3204908710 hasConcept C2779980732 @default.
- W3204908710 hasConcept C2780050217 @default.
- W3204908710 hasConcept C3018011982 @default.
- W3204908710 hasConcept C41008148 @default.
- W3204908710 hasConcept C45715564 @default.
- W3204908710 hasConcept C50644808 @default.
- W3204908710 hasConcept C86803240 @default.
- W3204908710 hasConceptScore W3204908710C111437709 @default.
- W3204908710 hasConceptScore W3204908710C153180895 @default.
- W3204908710 hasConceptScore W3204908710C154945302 @default.
- W3204908710 hasConceptScore W3204908710C15744967 @default.
- W3204908710 hasConceptScore W3204908710C169760540 @default.
- W3204908710 hasConceptScore W3204908710C180747234 @default.
- W3204908710 hasConceptScore W3204908710C201792869 @default.
- W3204908710 hasConceptScore W3204908710C2779918689 @default.
- W3204908710 hasConceptScore W3204908710C2779980732 @default.
- W3204908710 hasConceptScore W3204908710C2780050217 @default.
- W3204908710 hasConceptScore W3204908710C3018011982 @default.
- W3204908710 hasConceptScore W3204908710C41008148 @default.
- W3204908710 hasConceptScore W3204908710C45715564 @default.