Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204910330> ?p ?o ?g. }
- W3204910330 endingPage "1771" @default.
- W3204910330 startingPage "1761" @default.
- W3204910330 abstract "Understanding aging of tooth tissues is critical to the development of patient-centric oral healthcare. Yet, the traditional methods for analyzing the composition-structure-property relationships of hard tissues have limitations when considering aging and other factors.To apply unsupervised machine learning tools to pursue an understanding of relationships between the composition and mechanical behavior of aging enamel.Molar teeth were collected from primary (age ≤ 8), young adult (24 ≤ age ≤ 46) and old adult (55 ≤ age) donors. The hardness and elastic modulus were quantified using nanoindentation as a function of distance from the Dentin Enamel Junction (DEJ) within the cervical, cuspal and inter-cuspal regions of the enamel crown. Similarly, a co-located analysis of the chemical composition and structure was performed using Raman spectroscopy. A Self-Organizing Maps (SOMs) algorithm was implemented to identify multi-dimensional composition-property relationships.The hardness and elastic modulus are positively correlated to crystallinity and negatively correlated with carbonate substitution. Furthermore, the effects from fluoridation on the age-dependent properties of enamel is non-linear and depends on its location. The contributions of fluoridation to the enamel properties are different in the cervical and non-cervical regions and appear to be unique within primary and senior adult teeth.Based on the findings, unsupervised learning methods can reveal complicated non-linear structure-property relationships in tooth tissues and help to understand the materials science of aging and its consequences." @default.
- W3204910330 created "2021-10-11" @default.
- W3204910330 creator A5039168165 @default.
- W3204910330 creator A5043325566 @default.
- W3204910330 creator A5060077683 @default.
- W3204910330 creator A5074872099 @default.
- W3204910330 date "2021-12-01" @default.
- W3204910330 modified "2023-09-26" @default.
- W3204910330 title "A machine learning approach to investigate the materials science of enamel aging" @default.
- W3204910330 cites W1979854024 @default.
- W3204910330 cites W1981464207 @default.
- W3204910330 cites W1991553543 @default.
- W3204910330 cites W2003853710 @default.
- W3204910330 cites W2005601953 @default.
- W3204910330 cites W2007444000 @default.
- W3204910330 cites W2008530449 @default.
- W3204910330 cites W2009739506 @default.
- W3204910330 cites W2015290265 @default.
- W3204910330 cites W2015371152 @default.
- W3204910330 cites W2026856978 @default.
- W3204910330 cites W2031366103 @default.
- W3204910330 cites W2042257011 @default.
- W3204910330 cites W2051316444 @default.
- W3204910330 cites W2051577630 @default.
- W3204910330 cites W2051582762 @default.
- W3204910330 cites W2070193545 @default.
- W3204910330 cites W2081185702 @default.
- W3204910330 cites W2088995204 @default.
- W3204910330 cites W2093182270 @default.
- W3204910330 cites W2107159895 @default.
- W3204910330 cites W2108929155 @default.
- W3204910330 cites W2111706923 @default.
- W3204910330 cites W2140696174 @default.
- W3204910330 cites W2142622967 @default.
- W3204910330 cites W2144565447 @default.
- W3204910330 cites W2146132963 @default.
- W3204910330 cites W2154094465 @default.
- W3204910330 cites W2169563040 @default.
- W3204910330 cites W2171209182 @default.
- W3204910330 cites W2205441305 @default.
- W3204910330 cites W2242647033 @default.
- W3204910330 cites W2333380119 @default.
- W3204910330 cites W2523687761 @default.
- W3204910330 cites W2556917034 @default.
- W3204910330 cites W2735968650 @default.
- W3204910330 cites W2806884962 @default.
- W3204910330 cites W2913376510 @default.
- W3204910330 cites W2931611327 @default.
- W3204910330 cites W2952630352 @default.
- W3204910330 cites W3019890795 @default.
- W3204910330 cites W3087272060 @default.
- W3204910330 doi "https://doi.org/10.1016/j.dental.2021.09.006" @default.
- W3204910330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34625295" @default.
- W3204910330 hasPublicationYear "2021" @default.
- W3204910330 type Work @default.
- W3204910330 sameAs 3204910330 @default.
- W3204910330 citedByCount "4" @default.
- W3204910330 countsByYear W32049103302022 @default.
- W3204910330 countsByYear W32049103302023 @default.
- W3204910330 crossrefType "journal-article" @default.
- W3204910330 hasAuthorship W3204910330A5039168165 @default.
- W3204910330 hasAuthorship W3204910330A5043325566 @default.
- W3204910330 hasAuthorship W3204910330A5060077683 @default.
- W3204910330 hasAuthorship W3204910330A5074872099 @default.
- W3204910330 hasBestOaLocation W32049103301 @default.
- W3204910330 hasConcept C156887251 @default.
- W3204910330 hasConcept C159985019 @default.
- W3204910330 hasConcept C192562407 @default.
- W3204910330 hasConcept C199343813 @default.
- W3204910330 hasConcept C2779263046 @default.
- W3204910330 hasConcept C46275449 @default.
- W3204910330 hasConcept C49326732 @default.
- W3204910330 hasConcept C71924100 @default.
- W3204910330 hasConceptScore W3204910330C156887251 @default.
- W3204910330 hasConceptScore W3204910330C159985019 @default.
- W3204910330 hasConceptScore W3204910330C192562407 @default.
- W3204910330 hasConceptScore W3204910330C199343813 @default.
- W3204910330 hasConceptScore W3204910330C2779263046 @default.
- W3204910330 hasConceptScore W3204910330C46275449 @default.
- W3204910330 hasConceptScore W3204910330C49326732 @default.
- W3204910330 hasConceptScore W3204910330C71924100 @default.
- W3204910330 hasFunder F4320306076 @default.
- W3204910330 hasFunder F4320307808 @default.
- W3204910330 hasFunder F4320310094 @default.
- W3204910330 hasFunder F4320332161 @default.
- W3204910330 hasFunder F4320332760 @default.
- W3204910330 hasFunder F4320333606 @default.
- W3204910330 hasIssue "12" @default.
- W3204910330 hasLocation W32049103301 @default.
- W3204910330 hasLocation W32049103302 @default.
- W3204910330 hasOpenAccess W3204910330 @default.
- W3204910330 hasPrimaryLocation W32049103301 @default.
- W3204910330 hasRelatedWork W1970997419 @default.
- W3204910330 hasRelatedWork W2005366662 @default.
- W3204910330 hasRelatedWork W2108887759 @default.
- W3204910330 hasRelatedWork W2124717448 @default.
- W3204910330 hasRelatedWork W2321184270 @default.
- W3204910330 hasRelatedWork W2358928726 @default.