Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204920169> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3204920169 abstract "Spark is popular for its ability to enable high-performance data analytics applications on diverse systems. Its great versatility is achieved through numerous user- and system-level options, resulting in an exponential configuration space that, ironically, hinders data analytics’s optimal performance. The colossal complexity is caused by two main issues: the high dimensionality of configuration space and the expensive black-box configuration-performance relationship. In this paper, we design and develop a robust tuning framework called ROBOTune that can tackle both issues and tune Spark applications quickly for efficient data analytics. Specifically, it performs parameter selection through a Random Forests based model to reduce the dimensionality of analytics configuration space. In addition, ROBOTune employs Bayesian Optimization to overcome the complex nature of the configuration-performance relationship and balance exploration and exploitation to efficiently locate a globally optimal or near-optimal configuration. Furthermore, ROBOTune strengthens Latin Hypercube Sampling with caching and memoization to enhance the coverage and effectiveness in the generation of sample configurations. Our evaluation results demonstrate that ROBOTune finds similar or better performing configurations than contemporary tuning tools like BestConfig and Gunther while improving on search cost by 1.59 × and 1.53 × on average and up to 2.27 × and 1.71 × , respectively." @default.
- W3204920169 created "2021-10-11" @default.
- W3204920169 creator A5021800353 @default.
- W3204920169 creator A5070216261 @default.
- W3204920169 date "2021-08-09" @default.
- W3204920169 modified "2023-09-25" @default.
- W3204920169 title "ROBOTune: High-Dimensional Configuration Tuning for Cluster-Based Data Analytics" @default.
- W3204920169 cites W1875061881 @default.
- W3204920169 cites W2056132907 @default.
- W3204920169 cites W2061144551 @default.
- W3204920169 cites W2112474496 @default.
- W3204920169 cites W2116067849 @default.
- W3204920169 cites W2190012392 @default.
- W3204920169 cites W2192203593 @default.
- W3204920169 cites W2210373274 @default.
- W3204920169 cites W2318383848 @default.
- W3204920169 cites W2502759836 @default.
- W3204920169 cites W2542459869 @default.
- W3204920169 cites W2613206411 @default.
- W3204920169 cites W2772089072 @default.
- W3204920169 cites W2792529086 @default.
- W3204920169 cites W2911964244 @default.
- W3204920169 cites W2991050929 @default.
- W3204920169 cites W2997591727 @default.
- W3204920169 cites W3098844916 @default.
- W3204920169 doi "https://doi.org/10.1145/3472456.3472518" @default.
- W3204920169 hasPublicationYear "2021" @default.
- W3204920169 type Work @default.
- W3204920169 sameAs 3204920169 @default.
- W3204920169 citedByCount "2" @default.
- W3204920169 countsByYear W32049201692022 @default.
- W3204920169 crossrefType "proceedings-article" @default.
- W3204920169 hasAuthorship W3204920169A5021800353 @default.
- W3204920169 hasAuthorship W3204920169A5070216261 @default.
- W3204920169 hasConcept C111030470 @default.
- W3204920169 hasConcept C111919701 @default.
- W3204920169 hasConcept C119857082 @default.
- W3204920169 hasConcept C120314980 @default.
- W3204920169 hasConcept C121332964 @default.
- W3204920169 hasConcept C124101348 @default.
- W3204920169 hasConcept C175801342 @default.
- W3204920169 hasConcept C199360897 @default.
- W3204920169 hasConcept C2777062904 @default.
- W3204920169 hasConcept C2777904410 @default.
- W3204920169 hasConcept C2778049539 @default.
- W3204920169 hasConcept C2781215313 @default.
- W3204920169 hasConcept C41008148 @default.
- W3204920169 hasConcept C62520636 @default.
- W3204920169 hasConcept C75684735 @default.
- W3204920169 hasConcept C79158427 @default.
- W3204920169 hasConcept C90738871 @default.
- W3204920169 hasConceptScore W3204920169C111030470 @default.
- W3204920169 hasConceptScore W3204920169C111919701 @default.
- W3204920169 hasConceptScore W3204920169C119857082 @default.
- W3204920169 hasConceptScore W3204920169C120314980 @default.
- W3204920169 hasConceptScore W3204920169C121332964 @default.
- W3204920169 hasConceptScore W3204920169C124101348 @default.
- W3204920169 hasConceptScore W3204920169C175801342 @default.
- W3204920169 hasConceptScore W3204920169C199360897 @default.
- W3204920169 hasConceptScore W3204920169C2777062904 @default.
- W3204920169 hasConceptScore W3204920169C2777904410 @default.
- W3204920169 hasConceptScore W3204920169C2778049539 @default.
- W3204920169 hasConceptScore W3204920169C2781215313 @default.
- W3204920169 hasConceptScore W3204920169C41008148 @default.
- W3204920169 hasConceptScore W3204920169C62520636 @default.
- W3204920169 hasConceptScore W3204920169C75684735 @default.
- W3204920169 hasConceptScore W3204920169C79158427 @default.
- W3204920169 hasConceptScore W3204920169C90738871 @default.
- W3204920169 hasLocation W32049201691 @default.
- W3204920169 hasOpenAccess W3204920169 @default.
- W3204920169 hasPrimaryLocation W32049201691 @default.
- W3204920169 hasRelatedWork W2337538147 @default.
- W3204920169 hasRelatedWork W2752106475 @default.
- W3204920169 hasRelatedWork W2769430831 @default.
- W3204920169 hasRelatedWork W2920997070 @default.
- W3204920169 hasRelatedWork W2953793907 @default.
- W3204920169 hasRelatedWork W3177086633 @default.
- W3204920169 hasRelatedWork W3191926225 @default.
- W3204920169 hasRelatedWork W4206451144 @default.
- W3204920169 hasRelatedWork W4226411239 @default.
- W3204920169 hasRelatedWork W4312118298 @default.
- W3204920169 isParatext "false" @default.
- W3204920169 isRetracted "false" @default.
- W3204920169 magId "3204920169" @default.
- W3204920169 workType "article" @default.