Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204920386> ?p ?o ?g. }
- W3204920386 endingPage "7042" @default.
- W3204920386 startingPage "7028" @default.
- W3204920386 abstract "Abstract Purpose Brachytherapy combined with external beam radiotherapy (EBRT) is the standard treatment for cervical cancer and has been shown to improve overall survival rates compared to EBRT only. Magnetic resonance (MR) imaging is used for radiotherapy (RT) planning and image guidance due to its excellent soft tissue image contrast. Rapid and accurate segmentation of organs at risk (OAR) is a crucial step in MR image‐guided RT. In this paper, we propose a fully automated two‐step convolutional neural network (CNN) approach to delineate multiple OARs from T2‐weighted (T2W) MR images. Methods We employ a coarse‐to‐fine segmentation strategy. The coarse segmentation step first identifies the approximate boundary of each organ of interest and crops the MR volume around the centroid of organ‐specific region of interest (ROI). The cropped ROI volumes are then fed to organ‐specific fine segmentation networks to produce detailed segmentation of each organ. A three‐dimensional (3‐D) U‐Net is trained to perform the coarse segmentation. For the fine segmentation, a 3‐D Dense U‐Net is employed in which a modified 3‐D dense block is incorporated into the 3‐D U‐Net‐like network to acquire inter and intra‐slice features and improve information flow while reducing computational complexity. Two sets of T2W MR images (221 cases for MR1 and 62 for MR2) were taken with slightly different imaging parameters and used for our network training and test. The network was first trained on MR1 which was a larger sample set. The trained model was then transferred to the MR2 domain via a fine‐tuning approach. Active learning strategy was utilized for selecting the most valuable data from MR2 to be included in the adaptation via transfer learning. Results The proposed method was tested on 20 MR1 and 32 MR2 test sets. Mean ± SD dice similarity coefficients are 0.93 ± 0.04, 0.87 ± 0.03, and 0.80 ± 0.10 on MR1 and 0.94 ± 0.05, 0.88 ± 0.04, and 0.80 ± 0.05 on MR2 for bladder, rectum, and sigmoid, respectively. Hausdorff distances (95th percentile) are 4.18 ± 0.52, 2.54 ± 0.41, and 5.03 ± 1.31 mm on MR1 and 2.89 ± 0.33, 2.24 ± 0.40, and 3.28 ± 1.08 mm on MR2, respectively. The performance of our method is superior to other state‐of‐the‐art segmentation methods. Conclusions We proposed a two‐step CNN approach for fully automated segmentation of female pelvic MR bladder, rectum, and sigmoid from T2W MR volume. Our experimental results demonstrate that the developed method is accurate, fast, and reproducible, and outperforms alternative state‐of‐the‐art methods for OAR segmentation significantly ( p < 0.05)." @default.
- W3204920386 created "2021-10-11" @default.
- W3204920386 creator A5013489602 @default.
- W3204920386 creator A5014173669 @default.
- W3204920386 creator A5053471314 @default.
- W3204920386 creator A5085438267 @default.
- W3204920386 creator A5087967652 @default.
- W3204920386 date "2021-10-21" @default.
- W3204920386 modified "2023-10-07" @default.
- W3204920386 title "Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse‐to‐fine convolutional neural network" @default.
- W3204920386 cites W2052617496 @default.
- W3204920386 cites W2056926361 @default.
- W3204920386 cites W2106033751 @default.
- W3204920386 cites W2127412835 @default.
- W3204920386 cites W2346062110 @default.
- W3204920386 cites W2464708700 @default.
- W3204920386 cites W2560322684 @default.
- W3204920386 cites W2604785265 @default.
- W3204920386 cites W2604790786 @default.
- W3204920386 cites W2750023899 @default.
- W3204920386 cites W2799977439 @default.
- W3204920386 cites W2805205462 @default.
- W3204920386 cites W2896797790 @default.
- W3204920386 cites W2911823761 @default.
- W3204920386 cites W2939917862 @default.
- W3204920386 cites W2963446712 @default.
- W3204920386 cites W2963908753 @default.
- W3204920386 cites W2964227007 @default.
- W3204920386 cites W2970397044 @default.
- W3204920386 cites W2988053426 @default.
- W3204920386 cites W2999484173 @default.
- W3204920386 cites W2999978966 @default.
- W3204920386 cites W3000054715 @default.
- W3204920386 cites W3016666924 @default.
- W3204920386 cites W3017774855 @default.
- W3204920386 cites W3041688195 @default.
- W3204920386 cites W3045252664 @default.
- W3204920386 cites W3089117938 @default.
- W3204920386 cites W3092941474 @default.
- W3204920386 cites W3112667527 @default.
- W3204920386 cites W3123921685 @default.
- W3204920386 cites W3132126832 @default.
- W3204920386 cites W3211488171 @default.
- W3204920386 cites W66531091 @default.
- W3204920386 doi "https://doi.org/10.1002/mp.15268" @default.
- W3204920386 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8597653" @default.
- W3204920386 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34609756" @default.
- W3204920386 hasPublicationYear "2021" @default.
- W3204920386 type Work @default.
- W3204920386 sameAs 3204920386 @default.
- W3204920386 citedByCount "14" @default.
- W3204920386 countsByYear W32049203862022 @default.
- W3204920386 countsByYear W32049203862023 @default.
- W3204920386 crossrefType "journal-article" @default.
- W3204920386 hasAuthorship W3204920386A5013489602 @default.
- W3204920386 hasAuthorship W3204920386A5014173669 @default.
- W3204920386 hasAuthorship W3204920386A5053471314 @default.
- W3204920386 hasAuthorship W3204920386A5085438267 @default.
- W3204920386 hasAuthorship W3204920386A5087967652 @default.
- W3204920386 hasBestOaLocation W32049203862 @default.
- W3204920386 hasConcept C124504099 @default.
- W3204920386 hasConcept C126838900 @default.
- W3204920386 hasConcept C143409427 @default.
- W3204920386 hasConcept C146599234 @default.
- W3204920386 hasConcept C153180895 @default.
- W3204920386 hasConcept C154945302 @default.
- W3204920386 hasConcept C19609008 @default.
- W3204920386 hasConcept C2524010 @default.
- W3204920386 hasConcept C2777210771 @default.
- W3204920386 hasConcept C2777416452 @default.
- W3204920386 hasConcept C31972630 @default.
- W3204920386 hasConcept C33923547 @default.
- W3204920386 hasConcept C41008148 @default.
- W3204920386 hasConcept C50644808 @default.
- W3204920386 hasConcept C509974204 @default.
- W3204920386 hasConcept C71924100 @default.
- W3204920386 hasConcept C81363708 @default.
- W3204920386 hasConcept C89600930 @default.
- W3204920386 hasConceptScore W3204920386C124504099 @default.
- W3204920386 hasConceptScore W3204920386C126838900 @default.
- W3204920386 hasConceptScore W3204920386C143409427 @default.
- W3204920386 hasConceptScore W3204920386C146599234 @default.
- W3204920386 hasConceptScore W3204920386C153180895 @default.
- W3204920386 hasConceptScore W3204920386C154945302 @default.
- W3204920386 hasConceptScore W3204920386C19609008 @default.
- W3204920386 hasConceptScore W3204920386C2524010 @default.
- W3204920386 hasConceptScore W3204920386C2777210771 @default.
- W3204920386 hasConceptScore W3204920386C2777416452 @default.
- W3204920386 hasConceptScore W3204920386C31972630 @default.
- W3204920386 hasConceptScore W3204920386C33923547 @default.
- W3204920386 hasConceptScore W3204920386C41008148 @default.
- W3204920386 hasConceptScore W3204920386C50644808 @default.
- W3204920386 hasConceptScore W3204920386C509974204 @default.
- W3204920386 hasConceptScore W3204920386C71924100 @default.
- W3204920386 hasConceptScore W3204920386C81363708 @default.
- W3204920386 hasConceptScore W3204920386C89600930 @default.
- W3204920386 hasFunder F4320332161 @default.
- W3204920386 hasIssue "11" @default.