Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204927012> ?p ?o ?g. }
- W3204927012 abstract "Copulas are a convenient framework to synthesize joint distributions, particularly in higher dimensions. Currently, copula-based high dimensional settings are used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we employ shrinkage techniques for large covariance matrices in the problem of estimation of Gaussian and t copulas whose dimensionality goes well beyond that typical in the literature. Specifically, we use the covariance matrix shrinkage of Ledoit and Wolf to estimate large matrix parameters of Gaussian and t copulas for up to thousands of variables, using up to 20 times lower sample sizes. The simulation study shows that the shrinkage estimation significantly outperforms traditional estimators, both in low and especially high dimensions. We also apply this approach to the problem of allocation of large portfolios." @default.
- W3204927012 created "2021-10-11" @default.
- W3204927012 creator A5039558811 @default.
- W3204927012 creator A5042745330 @default.
- W3204927012 date "2021-01-01" @default.
- W3204927012 modified "2023-09-23" @default.
- W3204927012 title "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions" @default.
- W3204927012 cites W1512468949 @default.
- W3204927012 cites W1827554748 @default.
- W3204927012 cites W1911601650 @default.
- W3204927012 cites W1964166103 @default.
- W3204927012 cites W1968914532 @default.
- W3204927012 cites W1971672021 @default.
- W3204927012 cites W1975503939 @default.
- W3204927012 cites W1989885743 @default.
- W3204927012 cites W2028398989 @default.
- W3204927012 cites W2052386156 @default.
- W3204927012 cites W2053805777 @default.
- W3204927012 cites W2062125287 @default.
- W3204927012 cites W2073103707 @default.
- W3204927012 cites W2073681337 @default.
- W3204927012 cites W2079127074 @default.
- W3204927012 cites W2097068514 @default.
- W3204927012 cites W2106139345 @default.
- W3204927012 cites W2120575449 @default.
- W3204927012 cites W2127958806 @default.
- W3204927012 cites W2147853110 @default.
- W3204927012 cites W2162792766 @default.
- W3204927012 cites W2182028923 @default.
- W3204927012 cites W2268207689 @default.
- W3204927012 cites W2271406867 @default.
- W3204927012 cites W2515903151 @default.
- W3204927012 cites W2564772844 @default.
- W3204927012 cites W2566743845 @default.
- W3204927012 cites W2571412090 @default.
- W3204927012 cites W2580954861 @default.
- W3204927012 cites W2597514154 @default.
- W3204927012 cites W2616758160 @default.
- W3204927012 cites W2791175438 @default.
- W3204927012 cites W2791417449 @default.
- W3204927012 cites W2796175416 @default.
- W3204927012 cites W279682861 @default.
- W3204927012 cites W2803346572 @default.
- W3204927012 cites W2804760238 @default.
- W3204927012 cites W2888198740 @default.
- W3204927012 cites W2895719385 @default.
- W3204927012 cites W2900574948 @default.
- W3204927012 cites W2902011224 @default.
- W3204927012 cites W2947899588 @default.
- W3204927012 cites W2950381474 @default.
- W3204927012 cites W2964163889 @default.
- W3204927012 cites W3121369525 @default.
- W3204927012 cites W3121682558 @default.
- W3204927012 cites W3122045732 @default.
- W3204927012 cites W3122516617 @default.
- W3204927012 cites W3122732812 @default.
- W3204927012 cites W3124041622 @default.
- W3204927012 cites W3124158341 @default.
- W3204927012 cites W3124818701 @default.
- W3204927012 cites W3125814160 @default.
- W3204927012 cites W4225865461 @default.
- W3204927012 cites W43529558 @default.
- W3204927012 cites W58872498 @default.
- W3204927012 doi "https://doi.org/10.2139/ssrn.3939142" @default.
- W3204927012 hasPublicationYear "2021" @default.
- W3204927012 type Work @default.
- W3204927012 sameAs 3204927012 @default.
- W3204927012 citedByCount "0" @default.
- W3204927012 crossrefType "journal-article" @default.
- W3204927012 hasAuthorship W3204927012A5039558811 @default.
- W3204927012 hasAuthorship W3204927012A5042745330 @default.
- W3204927012 hasConcept C105795698 @default.
- W3204927012 hasConcept C121332964 @default.
- W3204927012 hasConcept C121864883 @default.
- W3204927012 hasConcept C149782125 @default.
- W3204927012 hasConcept C163716315 @default.
- W3204927012 hasConcept C180145272 @default.
- W3204927012 hasConcept C33923547 @default.
- W3204927012 hasConcept C41008148 @default.
- W3204927012 hasConcept C62520636 @default.
- W3204927012 hasConceptScore W3204927012C105795698 @default.
- W3204927012 hasConceptScore W3204927012C121332964 @default.
- W3204927012 hasConceptScore W3204927012C121864883 @default.
- W3204927012 hasConceptScore W3204927012C149782125 @default.
- W3204927012 hasConceptScore W3204927012C163716315 @default.
- W3204927012 hasConceptScore W3204927012C180145272 @default.
- W3204927012 hasConceptScore W3204927012C33923547 @default.
- W3204927012 hasConceptScore W3204927012C41008148 @default.
- W3204927012 hasConceptScore W3204927012C62520636 @default.
- W3204927012 hasLocation W32049270121 @default.
- W3204927012 hasOpenAccess W3204927012 @default.
- W3204927012 hasPrimaryLocation W32049270121 @default.
- W3204927012 hasRelatedWork W1966851638 @default.
- W3204927012 hasRelatedWork W1982980162 @default.
- W3204927012 hasRelatedWork W1983928632 @default.
- W3204927012 hasRelatedWork W2052605103 @default.
- W3204927012 hasRelatedWork W2073372811 @default.
- W3204927012 hasRelatedWork W2337187786 @default.
- W3204927012 hasRelatedWork W3015000206 @default.
- W3204927012 hasRelatedWork W4287817912 @default.