Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204937802> ?p ?o ?g. }
- W3204937802 endingPage "7347" @default.
- W3204937802 startingPage "7327" @default.
- W3204937802 abstract "Deep generative models are a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time, diversity, and architectural restrictions. In particular, this compendium covers energy-based models, variational autoencoders, generative adversarial networks, autoregressive models, normalizing flows, in addition to numerous hybrid approaches. These techniques are compared and contrasted, explaining the premises behind each and how they are interrelated, while reviewing current state-of-the-art advances and implementations." @default.
- W3204937802 created "2021-10-11" @default.
- W3204937802 creator A5011037821 @default.
- W3204937802 creator A5021510358 @default.
- W3204937802 creator A5023499426 @default.
- W3204937802 creator A5083332082 @default.
- W3204937802 date "2022-11-01" @default.
- W3204937802 modified "2023-10-18" @default.
- W3204937802 title "Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models" @default.
- W3204937802 cites W1516111018 @default.
- W3204937802 cites W1534417711 @default.
- W3204937802 cites W1585160083 @default.
- W3204937802 cites W1587799944 @default.
- W3204937802 cites W1684994732 @default.
- W3204937802 cites W1983452151 @default.
- W3204937802 cites W2013035813 @default.
- W3204937802 cites W2064675550 @default.
- W3204937802 cites W2116064496 @default.
- W3204937802 cites W2116825644 @default.
- W3204937802 cites W2136922672 @default.
- W3204937802 cites W2159528849 @default.
- W3204937802 cites W2194775991 @default.
- W3204937802 cites W2519766107 @default.
- W3204937802 cites W2531409750 @default.
- W3204937802 cites W2566832195 @default.
- W3204937802 cites W2593414223 @default.
- W3204937802 cites W2782599016 @default.
- W3204937802 cites W2799397159 @default.
- W3204937802 cites W2890139949 @default.
- W3204937802 cites W2903782687 @default.
- W3204937802 cites W2919388403 @default.
- W3204937802 cites W2953327099 @default.
- W3204937802 cites W2962770929 @default.
- W3204937802 cites W2963223306 @default.
- W3204937802 cites W2963300588 @default.
- W3204937802 cites W2964024144 @default.
- W3204937802 cites W2964335397 @default.
- W3204937802 cites W2979450790 @default.
- W3204937802 cites W2979652999 @default.
- W3204937802 cites W2990251202 @default.
- W3204937802 cites W2992005611 @default.
- W3204937802 cites W2998462233 @default.
- W3204937802 cites W3016186637 @default.
- W3204937802 cites W3023371261 @default.
- W3204937802 cites W3035166812 @default.
- W3204937802 cites W3035231706 @default.
- W3204937802 cites W3035574324 @default.
- W3204937802 cites W3088059392 @default.
- W3204937802 cites W3091123787 @default.
- W3204937802 cites W3093985743 @default.
- W3204937802 cites W3107912273 @default.
- W3204937802 cites W3113374047 @default.
- W3204937802 cites W3120254195 @default.
- W3204937802 cites W3132017167 @default.
- W3204937802 cites W3152004749 @default.
- W3204937802 cites W3173562028 @default.
- W3204937802 cites W3177242545 @default.
- W3204937802 cites W3180355996 @default.
- W3204937802 doi "https://doi.org/10.1109/tpami.2021.3116668" @default.
- W3204937802 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34591756" @default.
- W3204937802 hasPublicationYear "2022" @default.
- W3204937802 type Work @default.
- W3204937802 sameAs 3204937802 @default.
- W3204937802 citedByCount "71" @default.
- W3204937802 countsByYear W32049378022021 @default.
- W3204937802 countsByYear W32049378022022 @default.
- W3204937802 countsByYear W32049378022023 @default.
- W3204937802 crossrefType "journal-article" @default.
- W3204937802 hasAuthorship W3204937802A5011037821 @default.
- W3204937802 hasAuthorship W3204937802A5021510358 @default.
- W3204937802 hasAuthorship W3204937802A5023499426 @default.
- W3204937802 hasAuthorship W3204937802A5083332082 @default.
- W3204937802 hasBestOaLocation W32049378021 @default.
- W3204937802 hasConcept C108583219 @default.
- W3204937802 hasConcept C119857082 @default.
- W3204937802 hasConcept C149782125 @default.
- W3204937802 hasConcept C154945302 @default.
- W3204937802 hasConcept C159877910 @default.
- W3204937802 hasConcept C166957645 @default.
- W3204937802 hasConcept C2778473407 @default.
- W3204937802 hasConcept C33923547 @default.
- W3204937802 hasConcept C37736160 @default.
- W3204937802 hasConcept C39890363 @default.
- W3204937802 hasConcept C41008148 @default.
- W3204937802 hasConcept C50644808 @default.
- W3204937802 hasConcept C95457728 @default.
- W3204937802 hasConceptScore W3204937802C108583219 @default.
- W3204937802 hasConceptScore W3204937802C119857082 @default.
- W3204937802 hasConceptScore W3204937802C149782125 @default.
- W3204937802 hasConceptScore W3204937802C154945302 @default.
- W3204937802 hasConceptScore W3204937802C159877910 @default.
- W3204937802 hasConceptScore W3204937802C166957645 @default.
- W3204937802 hasConceptScore W3204937802C2778473407 @default.
- W3204937802 hasConceptScore W3204937802C33923547 @default.
- W3204937802 hasConceptScore W3204937802C37736160 @default.
- W3204937802 hasConceptScore W3204937802C39890363 @default.
- W3204937802 hasConceptScore W3204937802C41008148 @default.
- W3204937802 hasConceptScore W3204937802C50644808 @default.