Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204942970> ?p ?o ?g. }
- W3204942970 abstract "Abstract Well integrity (WI) impairments in oil and gas (O&G) wells are one of the most formidable challenges in the petroleum industry. Managing WI for different groups of well services necessitates precise assessment of risk level. When WI classification and risk assessment are performed using traditional methods such as spreadsheets, failures of well barriers will result in complicated and challenging WI management, especially in mature O&G fields. Industrial practices, then, started moving toward likelihood/ severity matrices which turned out later to be misleading in many cases due to possibility of having skewness in failure data. Developing a reliable model for classifying level of WI impairment is becoming more crucial for the industry. Artificial intelligence (AI) includes advanced algorithms that use machine learning (ML) and computing powers efficiently for predictive analytics. The main objective of this work is to develop ML models for the detection of integrity anomalies and early recognition of well failures. Most common ML algorithms in data science include; random forest, logistic regression, quadratic discriminant analysis, and boosting techniques. This model establishment comes after initial data gathering, pre-processing, and feature engineering. These models can iterate different failure scenarios considering all barrier elements that could contribute to the WI envelope. Thousands of WI data arrays can be literally collected and fed into ML models after being processed and structured properly. The new model presented in this paper can detect different WI anomalies and accurate analysis of failures can be achieved. This emphasizes that managing overall risks of WI failures is a robust and practical approach for direct implementation in mature fields. It also, creates additional enhancement for WI management. This perspective will improve efficiency of operations in addition to having the privilege of universality, where it can be applicable for different well groups. The rising wave of digitalization is anticipated to improve field operations, business performance, and production safety." @default.
- W3204942970 created "2021-10-11" @default.
- W3204942970 creator A5003321391 @default.
- W3204942970 creator A5019298007 @default.
- W3204942970 creator A5080076922 @default.
- W3204942970 date "2021-10-04" @default.
- W3204942970 modified "2023-10-16" @default.
- W3204942970 title "Application of Machine Learning Algorithms for Managing Well Integrity in Gas Lift Wells" @default.
- W3204942970 cites W1971046155 @default.
- W3204942970 cites W2004874932 @default.
- W3204942970 cites W2019920211 @default.
- W3204942970 cites W2020961274 @default.
- W3204942970 cites W2023033676 @default.
- W3204942970 cites W2053236197 @default.
- W3204942970 cites W2057799714 @default.
- W3204942970 cites W2059121759 @default.
- W3204942970 cites W2060258062 @default.
- W3204942970 cites W2061176252 @default.
- W3204942970 cites W2095003283 @default.
- W3204942970 cites W2138839934 @default.
- W3204942970 cites W2152820512 @default.
- W3204942970 cites W2251270867 @default.
- W3204942970 cites W2313631232 @default.
- W3204942970 cites W2338823636 @default.
- W3204942970 cites W2406593126 @default.
- W3204942970 cites W2504255386 @default.
- W3204942970 cites W2509594888 @default.
- W3204942970 cites W2512510272 @default.
- W3204942970 cites W2514512035 @default.
- W3204942970 cites W2531257189 @default.
- W3204942970 cites W2560357091 @default.
- W3204942970 cites W2585540576 @default.
- W3204942970 cites W2596713837 @default.
- W3204942970 cites W2618515094 @default.
- W3204942970 cites W2620584515 @default.
- W3204942970 cites W2626176756 @default.
- W3204942970 cites W2745818870 @default.
- W3204942970 cites W2784278107 @default.
- W3204942970 cites W2789488193 @default.
- W3204942970 cites W2800064183 @default.
- W3204942970 cites W2800670631 @default.
- W3204942970 cites W2801454134 @default.
- W3204942970 cites W2889749283 @default.
- W3204942970 cites W2895978636 @default.
- W3204942970 cites W2896203833 @default.
- W3204942970 cites W2896542983 @default.
- W3204942970 cites W2896840749 @default.
- W3204942970 cites W2897287876 @default.
- W3204942970 cites W2897611820 @default.
- W3204942970 cites W2899913338 @default.
- W3204942970 cites W2901279841 @default.
- W3204942970 cites W2903823226 @default.
- W3204942970 cites W2911390555 @default.
- W3204942970 cites W2937679422 @default.
- W3204942970 cites W2942293734 @default.
- W3204942970 cites W2978533577 @default.
- W3204942970 cites W3011343706 @default.
- W3204942970 cites W3024817233 @default.
- W3204942970 cites W3035441060 @default.
- W3204942970 cites W3154193034 @default.
- W3204942970 cites W4229595946 @default.
- W3204942970 cites W4233219372 @default.
- W3204942970 cites W4245957331 @default.
- W3204942970 cites W4247375704 @default.
- W3204942970 doi "https://doi.org/10.2118/205736-ms" @default.
- W3204942970 hasPublicationYear "2021" @default.
- W3204942970 type Work @default.
- W3204942970 sameAs 3204942970 @default.
- W3204942970 citedByCount "2" @default.
- W3204942970 countsByYear W32049429702022 @default.
- W3204942970 crossrefType "proceedings-article" @default.
- W3204942970 hasAuthorship W3204942970A5003321391 @default.
- W3204942970 hasAuthorship W3204942970A5019298007 @default.
- W3204942970 hasAuthorship W3204942970A5080076922 @default.
- W3204942970 hasConcept C108583219 @default.
- W3204942970 hasConcept C11413529 @default.
- W3204942970 hasConcept C119857082 @default.
- W3204942970 hasConcept C139002025 @default.
- W3204942970 hasConcept C154945302 @default.
- W3204942970 hasConcept C169258074 @default.
- W3204942970 hasConcept C199360897 @default.
- W3204942970 hasConcept C2777675914 @default.
- W3204942970 hasConcept C2778827112 @default.
- W3204942970 hasConcept C41008148 @default.
- W3204942970 hasConcept C43521106 @default.
- W3204942970 hasConcept C69738355 @default.
- W3204942970 hasConceptScore W3204942970C108583219 @default.
- W3204942970 hasConceptScore W3204942970C11413529 @default.
- W3204942970 hasConceptScore W3204942970C119857082 @default.
- W3204942970 hasConceptScore W3204942970C139002025 @default.
- W3204942970 hasConceptScore W3204942970C154945302 @default.
- W3204942970 hasConceptScore W3204942970C169258074 @default.
- W3204942970 hasConceptScore W3204942970C199360897 @default.
- W3204942970 hasConceptScore W3204942970C2777675914 @default.
- W3204942970 hasConceptScore W3204942970C2778827112 @default.
- W3204942970 hasConceptScore W3204942970C41008148 @default.
- W3204942970 hasConceptScore W3204942970C43521106 @default.
- W3204942970 hasConceptScore W3204942970C69738355 @default.
- W3204942970 hasLocation W32049429701 @default.
- W3204942970 hasOpenAccess W3204942970 @default.