Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204945387> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3204945387 endingPage "137028" @default.
- W3204945387 startingPage "137015" @default.
- W3204945387 abstract "Early detection of Type 2 diabetes is necessary for its prevention. The prediction models for detection systems normally employ common factors that may not properly fit all persons having different health conditions. Therefore, this study proposes a method for type 2 diabetes prediction with factors representing personal health conditions. More specifically, this study proposes a novel prediction method named Average Weighted Objective Distance (AWOD) based on the assumption that the individual has diverse health conditions resulting from different individual factors, a requirement for an effective prediction model. AWOD is a modification of Weighted Objective Distance (WOD) by applying information gain to reveal significant and insignificant individual factors having different priorities, which are represented by different weights. For AWOD, the data set is divided into a training set used to determine all relevant thresholds and constant values required for AWOD calculation and the testing set. In particular, AWOD is designed for binary classification problems with a relatively small dataset. To validate the proposed method, two datasets from open sources, Pima Indians Diabetes (Dataset 1) and Mendeley Data for Diabetes (Dataset 2) each containing 392 records, were studied. The prediction performance for both datasets is compared with the machine learning-based prediction methods, including K-Nearest Neighbors, Support Vector Machines, Random Forest, and Deep Learning. The comparison results showed that the proposed method provided 93.22% and 98.95% accuracy for Dataset 1 and Dataset 2, respectively, which are higher than those provided by other machine learning-based methods." @default.
- W3204945387 created "2021-10-11" @default.
- W3204945387 creator A5013830500 @default.
- W3204945387 creator A5034729364 @default.
- W3204945387 creator A5065393086 @default.
- W3204945387 date "2021-01-01" @default.
- W3204945387 modified "2023-10-17" @default.
- W3204945387 title "Average Weighted Objective Distance-Based Method for Type 2 Diabetes Prediction" @default.
- W3204945387 cites W2060608211 @default.
- W3204945387 cites W2108405186 @default.
- W3204945387 cites W2118414527 @default.
- W3204945387 cites W2119691028 @default.
- W3204945387 cites W2162693177 @default.
- W3204945387 cites W2520210802 @default.
- W3204945387 cites W2559137209 @default.
- W3204945387 cites W2765995311 @default.
- W3204945387 cites W2798413968 @default.
- W3204945387 cites W2886793380 @default.
- W3204945387 cites W2900329012 @default.
- W3204945387 cites W2910232405 @default.
- W3204945387 cites W2913328148 @default.
- W3204945387 cites W2913348101 @default.
- W3204945387 cites W2914527623 @default.
- W3204945387 cites W2939009161 @default.
- W3204945387 cites W2940384035 @default.
- W3204945387 cites W2967481668 @default.
- W3204945387 cites W2979164675 @default.
- W3204945387 cites W3013883100 @default.
- W3204945387 cites W3017209650 @default.
- W3204945387 cites W3039409118 @default.
- W3204945387 cites W3081255334 @default.
- W3204945387 cites W3088428816 @default.
- W3204945387 cites W3115324092 @default.
- W3204945387 cites W3170180467 @default.
- W3204945387 doi "https://doi.org/10.1109/access.2021.3117269" @default.
- W3204945387 hasPublicationYear "2021" @default.
- W3204945387 type Work @default.
- W3204945387 sameAs 3204945387 @default.
- W3204945387 citedByCount "12" @default.
- W3204945387 countsByYear W32049453872022 @default.
- W3204945387 countsByYear W32049453872023 @default.
- W3204945387 crossrefType "journal-article" @default.
- W3204945387 hasAuthorship W3204945387A5013830500 @default.
- W3204945387 hasAuthorship W3204945387A5034729364 @default.
- W3204945387 hasAuthorship W3204945387A5065393086 @default.
- W3204945387 hasBestOaLocation W32049453871 @default.
- W3204945387 hasConcept C105795698 @default.
- W3204945387 hasConcept C134018914 @default.
- W3204945387 hasConcept C153180895 @default.
- W3204945387 hasConcept C154945302 @default.
- W3204945387 hasConcept C2777180221 @default.
- W3204945387 hasConcept C33923547 @default.
- W3204945387 hasConcept C41008148 @default.
- W3204945387 hasConcept C555293320 @default.
- W3204945387 hasConcept C71924100 @default.
- W3204945387 hasConceptScore W3204945387C105795698 @default.
- W3204945387 hasConceptScore W3204945387C134018914 @default.
- W3204945387 hasConceptScore W3204945387C153180895 @default.
- W3204945387 hasConceptScore W3204945387C154945302 @default.
- W3204945387 hasConceptScore W3204945387C2777180221 @default.
- W3204945387 hasConceptScore W3204945387C33923547 @default.
- W3204945387 hasConceptScore W3204945387C41008148 @default.
- W3204945387 hasConceptScore W3204945387C555293320 @default.
- W3204945387 hasConceptScore W3204945387C71924100 @default.
- W3204945387 hasFunder F4320326818 @default.
- W3204945387 hasLocation W32049453871 @default.
- W3204945387 hasOpenAccess W3204945387 @default.
- W3204945387 hasPrimaryLocation W32049453871 @default.
- W3204945387 hasRelatedWork W1978450727 @default.
- W3204945387 hasRelatedWork W2033914206 @default.
- W3204945387 hasRelatedWork W2114668360 @default.
- W3204945387 hasRelatedWork W2146076056 @default.
- W3204945387 hasRelatedWork W2147291813 @default.
- W3204945387 hasRelatedWork W2163831990 @default.
- W3204945387 hasRelatedWork W2378160586 @default.
- W3204945387 hasRelatedWork W3003836766 @default.
- W3204945387 hasRelatedWork W4244943737 @default.
- W3204945387 hasRelatedWork W2289108895 @default.
- W3204945387 hasVolume "9" @default.
- W3204945387 isParatext "false" @default.
- W3204945387 isRetracted "false" @default.
- W3204945387 magId "3204945387" @default.
- W3204945387 workType "article" @default.