Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204946102> ?p ?o ?g. }
- W3204946102 abstract "In evolutionary genomics, it is fundamentally important to understand how characteristics of genomic sequences, such as gene expression level, determine the rate of adaptive evolution. While numerous statistical methods, such as the McDonald-Kreitman (MK) test, are available to examine the association between genomic features and the rate of adaptation, we currently lack a statistical approach to disentangle the independent effect of a genomic feature from the effects of other correlated genomic features. To address this problem, I present a novel statistical model, the MK regression, which augments the MK test with a generalized linear model. Analogous to the classical multiple regression model, the MK regression can analyze multiple genomic features simultaneously to infer the independent effect of a genomic feature, holding constant all other genomic features. Using the MK regression, I identify numerous genomic features driving positive selection in chimpanzees. These features include well-known ones, such as local mutation rate, residue exposure level, tissue specificity, and immune genes, as well as new features not previously reported, such as gene expression level and metabolic genes. In particular, I show that highly expressed genes may have a higher adaptation rate than their weakly expressed counterparts, even though a higher expression level may impose stronger negative selection. Also, I show that metabolic genes may have a higher adaptation rate than their nonmetabolic counterparts, possibly due to recent changes in diet in primate evolution. Overall, the MK regression is a powerful approach to elucidate the genomic basis of adaptation." @default.
- W3204946102 created "2021-10-11" @default.
- W3204946102 creator A5066663062 @default.
- W3204946102 date "2021-10-01" @default.
- W3204946102 modified "2023-10-16" @default.
- W3204946102 title "Dissecting Genomic Determinants of Positive Selection with an Evolution-Guided Regression Model" @default.
- W3204946102 cites W1525734744 @default.
- W3204946102 cites W1766190701 @default.
- W3204946102 cites W1881807356 @default.
- W3204946102 cites W1920973730 @default.
- W3204946102 cites W1930545807 @default.
- W3204946102 cites W1974858315 @default.
- W3204946102 cites W1978083828 @default.
- W3204946102 cites W1982603712 @default.
- W3204946102 cites W1987378985 @default.
- W3204946102 cites W1989277387 @default.
- W3204946102 cites W1990839617 @default.
- W3204946102 cites W1993728741 @default.
- W3204946102 cites W1998025025 @default.
- W3204946102 cites W2010457001 @default.
- W3204946102 cites W2012034410 @default.
- W3204946102 cites W2018634461 @default.
- W3204946102 cites W2026740174 @default.
- W3204946102 cites W2034234002 @default.
- W3204946102 cites W2043586699 @default.
- W3204946102 cites W2061661545 @default.
- W3204946102 cites W2067911388 @default.
- W3204946102 cites W2071537172 @default.
- W3204946102 cites W2086072858 @default.
- W3204946102 cites W2091718543 @default.
- W3204946102 cites W2096413602 @default.
- W3204946102 cites W2101341991 @default.
- W3204946102 cites W2101412130 @default.
- W3204946102 cites W2109441358 @default.
- W3204946102 cites W2112900933 @default.
- W3204946102 cites W2115325942 @default.
- W3204946102 cites W2117123843 @default.
- W3204946102 cites W2119261399 @default.
- W3204946102 cites W2122376908 @default.
- W3204946102 cites W2130410032 @default.
- W3204946102 cites W2130925862 @default.
- W3204946102 cites W2135753651 @default.
- W3204946102 cites W2136234423 @default.
- W3204946102 cites W2142668377 @default.
- W3204946102 cites W2146127418 @default.
- W3204946102 cites W2147476214 @default.
- W3204946102 cites W2149687548 @default.
- W3204946102 cites W2150733855 @default.
- W3204946102 cites W2152849583 @default.
- W3204946102 cites W2154770881 @default.
- W3204946102 cites W2157362913 @default.
- W3204946102 cites W2159522138 @default.
- W3204946102 cites W2160364329 @default.
- W3204946102 cites W2160714946 @default.
- W3204946102 cites W2160876388 @default.
- W3204946102 cites W2165810656 @default.
- W3204946102 cites W2167852161 @default.
- W3204946102 cites W2169212046 @default.
- W3204946102 cites W2169546600 @default.
- W3204946102 cites W2195303995 @default.
- W3204946102 cites W2239591911 @default.
- W3204946102 cites W2266439690 @default.
- W3204946102 cites W2280788332 @default.
- W3204946102 cites W2281531600 @default.
- W3204946102 cites W2304458632 @default.
- W3204946102 cites W2542228716 @default.
- W3204946102 cites W2559466477 @default.
- W3204946102 cites W2595351638 @default.
- W3204946102 cites W2767062083 @default.
- W3204946102 cites W2772902467 @default.
- W3204946102 cites W2787455785 @default.
- W3204946102 cites W2805750982 @default.
- W3204946102 cites W2899616402 @default.
- W3204946102 cites W2907374705 @default.
- W3204946102 cites W2915311225 @default.
- W3204946102 cites W2949163420 @default.
- W3204946102 cites W2949879071 @default.
- W3204946102 cites W2950400764 @default.
- W3204946102 cites W2950581144 @default.
- W3204946102 cites W2950971358 @default.
- W3204946102 cites W2954313009 @default.
- W3204946102 cites W2994687064 @default.
- W3204946102 cites W3011528942 @default.
- W3204946102 cites W3015097627 @default.
- W3204946102 cites W3015964336 @default.
- W3204946102 cites W3037488002 @default.
- W3204946102 cites W3043450424 @default.
- W3204946102 cites W3047512418 @default.
- W3204946102 cites W3123856905 @default.
- W3204946102 cites W4206037526 @default.
- W3204946102 cites W4231254854 @default.
- W3204946102 cites W4247412012 @default.
- W3204946102 cites W52354453 @default.
- W3204946102 doi "https://doi.org/10.1093/molbev/msab291" @default.
- W3204946102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34597406" @default.
- W3204946102 hasPublicationYear "2021" @default.
- W3204946102 type Work @default.
- W3204946102 sameAs 3204946102 @default.
- W3204946102 citedByCount "11" @default.
- W3204946102 countsByYear W32049461022021 @default.