Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204966257> ?p ?o ?g. }
- W3204966257 endingPage "734" @default.
- W3204966257 startingPage "727" @default.
- W3204966257 abstract "White matter hyperintensity (WMHI) lesions on MR images are an important indication of various types of brain diseases that involve inflammation and blood vessel abnormalities. Automated quantification of the WMHI can be valuable for the clinical management of patients, but existing automated software is often developed for a single type of disease and may not be applicable for clinical scans with thick slices and different scanning protocols. The purpose of the study is to develop and validate an algorithm for automatic quantification of white matter hyperintensity suitable for heterogeneous MRI data with different disease types.We developed and evaluated DeepWML, a deep learning method for fully automated white matter lesion (WML) segmentation of multicentre FLAIR images. We used MRI from 507 patients, including three distinct white matter diseases, obtained in 9 centres, with a wide range of scanners and acquisition protocols. The automated delineation tool was evaluated through quantitative parameters of Dice similarity, sensitivity and precision compared to manual delineation (gold standard).The overall median Dice similarity coefficient was 0.78 (range 0.64 ~ 0.86) across the three disease types and multiple centres. The median sensitivity and precision were 0.84 (range 0.67 ~ 0.94) and 0.81 (range 0.64 ~ 0.92), respectively. The tool's performance increased with larger lesion volumes.DeepWML was successfully applied to a wide spectrum of MRI data in the three white matter disease types, which has the potential to improve the practical workflow of white matter lesion delineation." @default.
- W3204966257 created "2021-10-11" @default.
- W3204966257 creator A5026413332 @default.
- W3204966257 creator A5028432411 @default.
- W3204966257 creator A5034288299 @default.
- W3204966257 creator A5048043623 @default.
- W3204966257 creator A5053246342 @default.
- W3204966257 creator A5064378373 @default.
- W3204966257 creator A5084624840 @default.
- W3204966257 date "2021-10-02" @default.
- W3204966257 modified "2023-10-18" @default.
- W3204966257 title "A deep learning algorithm for white matter hyperintensity lesion detection and segmentation" @default.
- W3204966257 cites W1901129140 @default.
- W3204966257 cites W2013013146 @default.
- W3204966257 cites W2021204548 @default.
- W3204966257 cites W2026616100 @default.
- W3204966257 cites W2037543818 @default.
- W3204966257 cites W2063948766 @default.
- W3204966257 cites W2102848905 @default.
- W3204966257 cites W2129229339 @default.
- W3204966257 cites W2158742097 @default.
- W3204966257 cites W2161913873 @default.
- W3204966257 cites W2441939542 @default.
- W3204966257 cites W2560103068 @default.
- W3204966257 cites W2560149744 @default.
- W3204966257 cites W2734349601 @default.
- W3204966257 cites W2765815459 @default.
- W3204966257 cites W2777074421 @default.
- W3204966257 cites W2783930509 @default.
- W3204966257 cites W2787769342 @default.
- W3204966257 cites W2789256791 @default.
- W3204966257 cites W2799452775 @default.
- W3204966257 cites W2807114581 @default.
- W3204966257 cites W2956027403 @default.
- W3204966257 cites W2963489244 @default.
- W3204966257 cites W2985411656 @default.
- W3204966257 cites W2995209110 @default.
- W3204966257 cites W2997337740 @default.
- W3204966257 cites W3038972077 @default.
- W3204966257 cites W3100315682 @default.
- W3204966257 doi "https://doi.org/10.1007/s00234-021-02820-w" @default.
- W3204966257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34599377" @default.
- W3204966257 hasPublicationYear "2021" @default.
- W3204966257 type Work @default.
- W3204966257 sameAs 3204966257 @default.
- W3204966257 citedByCount "8" @default.
- W3204966257 countsByYear W32049662572022 @default.
- W3204966257 countsByYear W32049662572023 @default.
- W3204966257 crossrefType "journal-article" @default.
- W3204966257 hasAuthorship W3204966257A5026413332 @default.
- W3204966257 hasAuthorship W3204966257A5028432411 @default.
- W3204966257 hasAuthorship W3204966257A5034288299 @default.
- W3204966257 hasAuthorship W3204966257A5048043623 @default.
- W3204966257 hasAuthorship W3204966257A5053246342 @default.
- W3204966257 hasAuthorship W3204966257A5064378373 @default.
- W3204966257 hasAuthorship W3204966257A5084624840 @default.
- W3204966257 hasBestOaLocation W32049662572 @default.
- W3204966257 hasConcept C101070640 @default.
- W3204966257 hasConcept C118552586 @default.
- W3204966257 hasConcept C124504099 @default.
- W3204966257 hasConcept C126838900 @default.
- W3204966257 hasConcept C143409427 @default.
- W3204966257 hasConcept C146638467 @default.
- W3204966257 hasConcept C153180895 @default.
- W3204966257 hasConcept C154945302 @default.
- W3204966257 hasConcept C163892561 @default.
- W3204966257 hasConcept C16568411 @default.
- W3204966257 hasConcept C2779889316 @default.
- W3204966257 hasConcept C2781192897 @default.
- W3204966257 hasConcept C2989005 @default.
- W3204966257 hasConcept C40993552 @default.
- W3204966257 hasConcept C41008148 @default.
- W3204966257 hasConcept C71924100 @default.
- W3204966257 hasConcept C89600930 @default.
- W3204966257 hasConceptScore W3204966257C101070640 @default.
- W3204966257 hasConceptScore W3204966257C118552586 @default.
- W3204966257 hasConceptScore W3204966257C124504099 @default.
- W3204966257 hasConceptScore W3204966257C126838900 @default.
- W3204966257 hasConceptScore W3204966257C143409427 @default.
- W3204966257 hasConceptScore W3204966257C146638467 @default.
- W3204966257 hasConceptScore W3204966257C153180895 @default.
- W3204966257 hasConceptScore W3204966257C154945302 @default.
- W3204966257 hasConceptScore W3204966257C163892561 @default.
- W3204966257 hasConceptScore W3204966257C16568411 @default.
- W3204966257 hasConceptScore W3204966257C2779889316 @default.
- W3204966257 hasConceptScore W3204966257C2781192897 @default.
- W3204966257 hasConceptScore W3204966257C2989005 @default.
- W3204966257 hasConceptScore W3204966257C40993552 @default.
- W3204966257 hasConceptScore W3204966257C41008148 @default.
- W3204966257 hasConceptScore W3204966257C71924100 @default.
- W3204966257 hasConceptScore W3204966257C89600930 @default.
- W3204966257 hasFunder F4320321001 @default.
- W3204966257 hasFunder F4320322919 @default.
- W3204966257 hasFunder F4320334978 @default.
- W3204966257 hasIssue "4" @default.
- W3204966257 hasLocation W32049662571 @default.
- W3204966257 hasLocation W32049662572 @default.
- W3204966257 hasLocation W32049662573 @default.