Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204979371> ?p ?o ?g. }
- W3204979371 endingPage "e26964" @default.
- W3204979371 startingPage "e26964" @default.
- W3204979371 abstract "Artificial intelligence (AI), such as machine learning (ML), shows great promise for improving clinical decision-making in cardiac diseases by outperforming statistical-based models. However, few AI-based tools have been implemented in cardiology clinics because of the sociotechnical challenges during transitioning from algorithm development to real-world implementation.This study explored how an ML-based tool for predicting ventricular tachycardia and ventricular fibrillation (VT/VF) could support clinical decision-making in the remote monitoring of patients with an implantable cardioverter defibrillator (ICD).Seven experienced electrophysiologists participated in a near-live feasibility and qualitative study, which included walkthroughs of 5 blinded retrospective patient cases, use of the prediction tool, and questionnaires and interview questions. All sessions were video recorded, and sessions evaluating the prediction tool were transcribed verbatim. Data were analyzed through an inductive qualitative approach based on grounded theory.The prediction tool was found to have potential for supporting decision-making in ICD remote monitoring by providing reassurance, increasing confidence, acting as a second opinion, reducing information search time, and enabling delegation of decisions to nurses and technicians. However, the prediction tool did not lead to changes in clinical action and was found less useful in cases where the quality of data was poor or when VT/VF predictions were found to be irrelevant for evaluating the patient.When transitioning from AI development to testing its feasibility for clinical implementation, we need to consider the following: expectations must be aligned with the intended use of AI; trust in the prediction tool is likely to emerge from real-world use; and AI accuracy is relational and dependent on available information and local workflows. Addressing the sociotechnical gap between the development and implementation of clinical decision-support tools based on ML in cardiac care is essential for succeeding with adoption. It is suggested to include clinical end-users, clinical contexts, and workflows throughout the overall iterative approach to design, development, and implementation." @default.
- W3204979371 created "2021-10-25" @default.
- W3204979371 creator A5011619847 @default.
- W3204979371 creator A5038026112 @default.
- W3204979371 creator A5041496036 @default.
- W3204979371 creator A5044965106 @default.
- W3204979371 creator A5063820409 @default.
- W3204979371 creator A5066505121 @default.
- W3204979371 creator A5068263676 @default.
- W3204979371 creator A5071322830 @default.
- W3204979371 creator A5071945117 @default.
- W3204979371 creator A5081766778 @default.
- W3204979371 creator A5083703658 @default.
- W3204979371 date "2021-11-26" @default.
- W3204979371 modified "2023-09-26" @default.
- W3204979371 title "Clinician Preimplementation Perspectives of a Decision-Support Tool for the Prediction of Cardiac Arrhythmia Based on Machine Learning: Near-Live Feasibility and Qualitative Study" @default.
- W3204979371 cites W1587891348 @default.
- W3204979371 cites W1678356000 @default.
- W3204979371 cites W1910561033 @default.
- W3204979371 cites W1976981270 @default.
- W3204979371 cites W2011088256 @default.
- W3204979371 cites W2012035409 @default.
- W3204979371 cites W2014261733 @default.
- W3204979371 cites W2034311573 @default.
- W3204979371 cites W2037036168 @default.
- W3204979371 cites W2090771594 @default.
- W3204979371 cites W2098836251 @default.
- W3204979371 cites W2098870768 @default.
- W3204979371 cites W2112916640 @default.
- W3204979371 cites W2148896305 @default.
- W3204979371 cites W2151398800 @default.
- W3204979371 cites W2153635508 @default.
- W3204979371 cites W2183607324 @default.
- W3204979371 cites W2282821441 @default.
- W3204979371 cites W2513905129 @default.
- W3204979371 cites W2557738935 @default.
- W3204979371 cites W2727650337 @default.
- W3204979371 cites W2750902029 @default.
- W3204979371 cites W2754051771 @default.
- W3204979371 cites W2795530988 @default.
- W3204979371 cites W2888171911 @default.
- W3204979371 cites W2888424632 @default.
- W3204979371 cites W2895789345 @default.
- W3204979371 cites W2902748974 @default.
- W3204979371 cites W2908201961 @default.
- W3204979371 cites W2908817998 @default.
- W3204979371 cites W2910165844 @default.
- W3204979371 cites W2915577650 @default.
- W3204979371 cites W2918497321 @default.
- W3204979371 cites W2930133442 @default.
- W3204979371 cites W2939345476 @default.
- W3204979371 cites W2940793653 @default.
- W3204979371 cites W2942157335 @default.
- W3204979371 cites W2942444880 @default.
- W3204979371 cites W2945543078 @default.
- W3204979371 cites W2950779628 @default.
- W3204979371 cites W2963095307 @default.
- W3204979371 cites W2965520043 @default.
- W3204979371 cites W2970837303 @default.
- W3204979371 cites W2984135870 @default.
- W3204979371 cites W2989925457 @default.
- W3204979371 cites W2997048718 @default.
- W3204979371 cites W3002972902 @default.
- W3204979371 cites W3004483087 @default.
- W3204979371 cites W3008847490 @default.
- W3204979371 cites W3011882394 @default.
- W3204979371 cites W3012391191 @default.
- W3204979371 cites W3013578857 @default.
- W3204979371 cites W3022206679 @default.
- W3204979371 cites W3030612195 @default.
- W3204979371 cites W3034285309 @default.
- W3204979371 cites W3080527613 @default.
- W3204979371 cites W3080958753 @default.
- W3204979371 cites W3088117820 @default.
- W3204979371 cites W3088428904 @default.
- W3204979371 cites W3092259203 @default.
- W3204979371 cites W3093086118 @default.
- W3204979371 cites W3094937636 @default.
- W3204979371 cites W3109650690 @default.
- W3204979371 cites W3111092203 @default.
- W3204979371 cites W3120083395 @default.
- W3204979371 cites W3125473938 @default.
- W3204979371 cites W3130272805 @default.
- W3204979371 cites W3163411042 @default.
- W3204979371 cites W4238530616 @default.
- W3204979371 cites W4288359828 @default.
- W3204979371 doi "https://doi.org/10.2196/26964" @default.
- W3204979371 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34842528" @default.
- W3204979371 hasPublicationYear "2021" @default.
- W3204979371 type Work @default.
- W3204979371 sameAs 3204979371 @default.
- W3204979371 citedByCount "11" @default.
- W3204979371 countsByYear W32049793712022 @default.
- W3204979371 countsByYear W32049793712023 @default.
- W3204979371 crossrefType "journal-article" @default.
- W3204979371 hasAuthorship W3204979371A5011619847 @default.
- W3204979371 hasAuthorship W3204979371A5038026112 @default.
- W3204979371 hasAuthorship W3204979371A5041496036 @default.