Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204990393> ?p ?o ?g. }
- W3204990393 endingPage "15236" @default.
- W3204990393 startingPage "15225" @default.
- W3204990393 abstract "One of the core issues of ecology is to understand the effects of landscape patterns on ecological processes. For this, we need to accurately capture changes in the fine landscape structures to avoid losing information about spatial heterogeneity. The landscape pattern indicators (LPIs) can characterize the spatial structures and give some information about landscape patterns. However, researches on LPIs had mainly focused on the horizontal structure of landscape patterns, while few studies addressed vertical relationships between the levels of hierarchical landscape structures. Thus, the ignorance of the vertical hierarchical relationships may cause serious biases and reduce LPIs' representational ability and accuracy. The hierarchy theory about the landscape pattern structures could notably reduce the loss of hierarchical information, and the information entropy could quantitatively describe the vertical status of landscape units. Therefore, we established a new multidimensional fusion method of LPIs based on hierarchy theory and information entropy. Here, we created a general fusion formula for commonly used simple LPIs based on two-grade land use data (whose land use classification system contains two grades/levels) and derived 3 fusion landscape pattern indicators (FLIs) with a case study. The results show that the information about fine spatial structure is captured by the fusion method. The regions with the most differences between the FLIs and the traditional LPIs are those with the largest vertical structure such as the ecological ecotones, where vertical structure was ignored before. The FLIs have a finer spatial representational ability and accuracy, not only retaining the main trend information of first-grade land use data, but also containing the internal detail information of second-grade land use data. Capturing finer spatial information of landscape patterns should encourage the application of fusion method, which should be suitable for more LPIs or more dimensional data. And the increased accuracy of FLIs will improve ecological models that rely on finer spatial information." @default.
- W3204990393 created "2021-10-25" @default.
- W3204990393 creator A5001896324 @default.
- W3204990393 creator A5011724895 @default.
- W3204990393 creator A5021289896 @default.
- W3204990393 creator A5033613632 @default.
- W3204990393 creator A5040778236 @default.
- W3204990393 creator A5043977636 @default.
- W3204990393 creator A5063342234 @default.
- W3204990393 creator A5074672626 @default.
- W3204990393 date "2021-10-12" @default.
- W3204990393 modified "2023-09-24" @default.
- W3204990393 title "Fusing multidimensional hierarchical information into finer spatial landscape metrics" @default.
- W3204990393 cites W1429391149 @default.
- W3204990393 cites W1520246438 @default.
- W3204990393 cites W1964182541 @default.
- W3204990393 cites W1976217146 @default.
- W3204990393 cites W1980944407 @default.
- W3204990393 cites W1981936404 @default.
- W3204990393 cites W2019343545 @default.
- W3204990393 cites W2022370729 @default.
- W3204990393 cites W2028702535 @default.
- W3204990393 cites W2033176844 @default.
- W3204990393 cites W2045066635 @default.
- W3204990393 cites W2049601096 @default.
- W3204990393 cites W2060108852 @default.
- W3204990393 cites W2068276846 @default.
- W3204990393 cites W2083698348 @default.
- W3204990393 cites W2102870482 @default.
- W3204990393 cites W2115981223 @default.
- W3204990393 cites W2116413045 @default.
- W3204990393 cites W2123284266 @default.
- W3204990393 cites W2140952675 @default.
- W3204990393 cites W2159611943 @default.
- W3204990393 cites W2414442453 @default.
- W3204990393 cites W2422558073 @default.
- W3204990393 cites W2565022589 @default.
- W3204990393 cites W2616379711 @default.
- W3204990393 cites W2799304808 @default.
- W3204990393 cites W2804010147 @default.
- W3204990393 cites W2891913129 @default.
- W3204990393 cites W2898487263 @default.
- W3204990393 cites W2905196625 @default.
- W3204990393 cites W2918313729 @default.
- W3204990393 cites W2944461767 @default.
- W3204990393 cites W2944980475 @default.
- W3204990393 cites W2980006727 @default.
- W3204990393 cites W2994408102 @default.
- W3204990393 cites W2999528786 @default.
- W3204990393 cites W2999593947 @default.
- W3204990393 cites W3091181788 @default.
- W3204990393 cites W4246361165 @default.
- W3204990393 doi "https://doi.org/10.1002/ece3.8206" @default.
- W3204990393 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8571621" @default.
- W3204990393 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34765173" @default.
- W3204990393 hasPublicationYear "2021" @default.
- W3204990393 type Work @default.
- W3204990393 sameAs 3204990393 @default.
- W3204990393 citedByCount "1" @default.
- W3204990393 countsByYear W32049903932022 @default.
- W3204990393 crossrefType "journal-article" @default.
- W3204990393 hasAuthorship W3204990393A5001896324 @default.
- W3204990393 hasAuthorship W3204990393A5011724895 @default.
- W3204990393 hasAuthorship W3204990393A5021289896 @default.
- W3204990393 hasAuthorship W3204990393A5033613632 @default.
- W3204990393 hasAuthorship W3204990393A5040778236 @default.
- W3204990393 hasAuthorship W3204990393A5043977636 @default.
- W3204990393 hasAuthorship W3204990393A5063342234 @default.
- W3204990393 hasAuthorship W3204990393A5074672626 @default.
- W3204990393 hasBestOaLocation W32049903933 @default.
- W3204990393 hasConcept C106301342 @default.
- W3204990393 hasConcept C121332964 @default.
- W3204990393 hasConcept C124101348 @default.
- W3204990393 hasConcept C159620131 @default.
- W3204990393 hasConcept C162324750 @default.
- W3204990393 hasConcept C185933670 @default.
- W3204990393 hasConcept C18903297 @default.
- W3204990393 hasConcept C205649164 @default.
- W3204990393 hasConcept C31170391 @default.
- W3204990393 hasConcept C34447519 @default.
- W3204990393 hasConcept C41008148 @default.
- W3204990393 hasConcept C58640448 @default.
- W3204990393 hasConcept C62520636 @default.
- W3204990393 hasConcept C62649853 @default.
- W3204990393 hasConcept C86803240 @default.
- W3204990393 hasConcept C87690585 @default.
- W3204990393 hasConceptScore W3204990393C106301342 @default.
- W3204990393 hasConceptScore W3204990393C121332964 @default.
- W3204990393 hasConceptScore W3204990393C124101348 @default.
- W3204990393 hasConceptScore W3204990393C159620131 @default.
- W3204990393 hasConceptScore W3204990393C162324750 @default.
- W3204990393 hasConceptScore W3204990393C185933670 @default.
- W3204990393 hasConceptScore W3204990393C18903297 @default.
- W3204990393 hasConceptScore W3204990393C205649164 @default.
- W3204990393 hasConceptScore W3204990393C31170391 @default.
- W3204990393 hasConceptScore W3204990393C34447519 @default.
- W3204990393 hasConceptScore W3204990393C41008148 @default.
- W3204990393 hasConceptScore W3204990393C58640448 @default.