Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204992562> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3204992562 endingPage "117" @default.
- W3204992562 startingPage "117" @default.
- W3204992562 abstract "Earthquakes and tremors are a common occurrence throughout the world, mostly in China, Japan and Indonesia. In Kenya, we experience a lot of tremors and landslides during the rainy seasons that have extensive negative social, economic, and environmental impacts. These damages include loss of human life, financial loss and destruction of infrastructure. This becomes a lagging factor towards achieving the Vision 2030 and Sustainable Development Goals (SDGs). This study used secondary data, obtained from World Wide Standardized Seismograph Station (WWSSSN) in Kilimambogo. Stochastic artificial neural network was adopted to identify prone areas to the said natural disasters, measure the socioeconomic impacts and build a predictive model for landslides, tremor and earthquakes in Kenya. It was evident that landslides are destructive in nature through observable measurable impacts on people. They increase the social and economic burden on the affected people. 64.76% of the measurable impacts affect human beings directly while the rest affect cattle and crops. Along the Great rift valley, most earthquakes and landslides took place. This is attributed to the active seismic activities. Kenya experiences earthquakes of magnitude m < 4. Our model achieved root mean square of 0.435. Furthermore, we got R<sup>2</sup>=0.80 for testing dataset. This implied that 80% of data was trainable by the model. Therefore, the predictive neural network model is efficient and accurate in forecasting, and more importantly is a good fit model." @default.
- W3204992562 created "2021-10-25" @default.
- W3204992562 creator A5048395869 @default.
- W3204992562 creator A5049756905 @default.
- W3204992562 creator A5058686266 @default.
- W3204992562 date "2021-01-01" @default.
- W3204992562 modified "2023-10-18" @default.
- W3204992562 title "Seismic Detection Model Using Machine Learning to Protect the Public from Landslide and Earthquake Disasters in Kenya" @default.
- W3204992562 doi "https://doi.org/10.11648/j.ijdsa.20210705.11" @default.
- W3204992562 hasPublicationYear "2021" @default.
- W3204992562 type Work @default.
- W3204992562 sameAs 3204992562 @default.
- W3204992562 citedByCount "0" @default.
- W3204992562 crossrefType "journal-article" @default.
- W3204992562 hasAuthorship W3204992562A5048395869 @default.
- W3204992562 hasAuthorship W3204992562A5049756905 @default.
- W3204992562 hasAuthorship W3204992562A5058686266 @default.
- W3204992562 hasBestOaLocation W32049925621 @default.
- W3204992562 hasConcept C105795698 @default.
- W3204992562 hasConcept C119217923 @default.
- W3204992562 hasConcept C127313418 @default.
- W3204992562 hasConcept C153294291 @default.
- W3204992562 hasConcept C15744967 @default.
- W3204992562 hasConcept C165205528 @default.
- W3204992562 hasConcept C166566181 @default.
- W3204992562 hasConcept C186295008 @default.
- W3204992562 hasConcept C186594467 @default.
- W3204992562 hasConcept C205649164 @default.
- W3204992562 hasConcept C2776962539 @default.
- W3204992562 hasConcept C33923547 @default.
- W3204992562 hasConcept C542102704 @default.
- W3204992562 hasConceptScore W3204992562C105795698 @default.
- W3204992562 hasConceptScore W3204992562C119217923 @default.
- W3204992562 hasConceptScore W3204992562C127313418 @default.
- W3204992562 hasConceptScore W3204992562C153294291 @default.
- W3204992562 hasConceptScore W3204992562C15744967 @default.
- W3204992562 hasConceptScore W3204992562C165205528 @default.
- W3204992562 hasConceptScore W3204992562C166566181 @default.
- W3204992562 hasConceptScore W3204992562C186295008 @default.
- W3204992562 hasConceptScore W3204992562C186594467 @default.
- W3204992562 hasConceptScore W3204992562C205649164 @default.
- W3204992562 hasConceptScore W3204992562C2776962539 @default.
- W3204992562 hasConceptScore W3204992562C33923547 @default.
- W3204992562 hasConceptScore W3204992562C542102704 @default.
- W3204992562 hasIssue "5" @default.
- W3204992562 hasLocation W32049925621 @default.
- W3204992562 hasOpenAccess W3204992562 @default.
- W3204992562 hasPrimaryLocation W32049925621 @default.
- W3204992562 hasRelatedWork W1985265989 @default.
- W3204992562 hasRelatedWork W2025977027 @default.
- W3204992562 hasRelatedWork W2309540366 @default.
- W3204992562 hasRelatedWork W2568987461 @default.
- W3204992562 hasRelatedWork W2740396175 @default.
- W3204992562 hasRelatedWork W30167164 @default.
- W3204992562 hasRelatedWork W3044608003 @default.
- W3204992562 hasRelatedWork W3204992562 @default.
- W3204992562 hasRelatedWork W4210369039 @default.
- W3204992562 hasRelatedWork W4302326245 @default.
- W3204992562 hasVolume "7" @default.
- W3204992562 isParatext "false" @default.
- W3204992562 isRetracted "false" @default.
- W3204992562 magId "3204992562" @default.
- W3204992562 workType "article" @default.