Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204995170> ?p ?o ?g. }
- W3204995170 abstract "Abstract Background Neural-network methods have been widely used for the prediction of dose distributions in radiotherapy. However, the prediction accuracy of existing methods may be degraded by the problem of dose imbalance. In this work, a new loss function is proposed to alleviate the dose imbalance and achieve more accurate prediction results. The U-Net architecture was employed to build a prediction model. Our study involved a total of 110 patients with left-breast cancer, who were previously treated by volumetric-modulated arc radiotherapy. The patient dataset was divided into training and test subsets of 100 and 10 cases, respectively. We proposed a novel ‘sharp loss’ function, and a parameter γ was used to adjust the loss properties. The mean square error (MSE) loss and the sharp loss with different γ values were tested and compared using the Wilcoxon signed-rank test. Results The sharp loss achieved superior dose prediction results compared to those of the MSE loss. The best performance with the MSE loss and the sharp loss was obtained when the parameter γ was set to 100. Specifically, the mean absolute difference values for the planning target volume were 318.87 ± 30.23 for the MSE loss versus 144.15 ± 16.27 for the sharp loss with γ = 100 ( p < 0.05). The corresponding values for the ipsilateral lung, the heart, the contralateral lung, and the spinal cord were 278.99 ± 51.68 versus 198.75 ± 61.38 ( p < 0.05), 216.99 ± 44.13 versus 144.86 ± 43.98 ( p < 0.05), 125.96 ± 66.76 versus 111.86 ± 47.19 ( p > 0.05), and 194.30 ± 14.51 versus 168.58 ± 25.97 ( p < 0.05), respectively. Conclusions The sharp loss function could significantly improve the accuracy of radiotherapy dose prediction." @default.
- W3204995170 created "2021-10-25" @default.
- W3204995170 creator A5033099048 @default.
- W3204995170 creator A5055068620 @default.
- W3204995170 creator A5061124156 @default.
- W3204995170 creator A5076399600 @default.
- W3204995170 creator A5079099788 @default.
- W3204995170 creator A5083365362 @default.
- W3204995170 date "2021-10-09" @default.
- W3204995170 modified "2023-10-18" @default.
- W3204995170 title "Sharp loss: a new loss function for radiotherapy dose prediction based on fully convolutional networks" @default.
- W3204995170 cites W1963932209 @default.
- W3204995170 cites W1966867308 @default.
- W3204995170 cites W1978752707 @default.
- W3204995170 cites W1987419782 @default.
- W3204995170 cites W2076933195 @default.
- W3204995170 cites W2093029797 @default.
- W3204995170 cites W2131034218 @default.
- W3204995170 cites W2148519890 @default.
- W3204995170 cites W2196898084 @default.
- W3204995170 cites W2334943959 @default.
- W3204995170 cites W2343861259 @default.
- W3204995170 cites W2526009326 @default.
- W3204995170 cites W2757454662 @default.
- W3204995170 cites W2884821079 @default.
- W3204995170 cites W2898515460 @default.
- W3204995170 cites W2898757811 @default.
- W3204995170 cites W2900148384 @default.
- W3204995170 cites W2904510361 @default.
- W3204995170 cites W2904732647 @default.
- W3204995170 cites W2922164578 @default.
- W3204995170 cites W2963308874 @default.
- W3204995170 cites W2963351448 @default.
- W3204995170 cites W2970347135 @default.
- W3204995170 cites W2981271973 @default.
- W3204995170 cites W2984983445 @default.
- W3204995170 cites W3029606814 @default.
- W3204995170 cites W3031208757 @default.
- W3204995170 cites W3034328552 @default.
- W3204995170 cites W3105594088 @default.
- W3204995170 cites W4233415207 @default.
- W3204995170 doi "https://doi.org/10.1186/s12938-021-00937-w" @default.
- W3204995170 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8501531" @default.
- W3204995170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34627279" @default.
- W3204995170 hasPublicationYear "2021" @default.
- W3204995170 type Work @default.
- W3204995170 sameAs 3204995170 @default.
- W3204995170 citedByCount "3" @default.
- W3204995170 countsByYear W32049951702022 @default.
- W3204995170 countsByYear W32049951702023 @default.
- W3204995170 crossrefType "journal-article" @default.
- W3204995170 hasAuthorship W3204995170A5033099048 @default.
- W3204995170 hasAuthorship W3204995170A5055068620 @default.
- W3204995170 hasAuthorship W3204995170A5061124156 @default.
- W3204995170 hasAuthorship W3204995170A5076399600 @default.
- W3204995170 hasAuthorship W3204995170A5079099788 @default.
- W3204995170 hasAuthorship W3204995170A5083365362 @default.
- W3204995170 hasBestOaLocation W32049951701 @default.
- W3204995170 hasConcept C104317684 @default.
- W3204995170 hasConcept C105795698 @default.
- W3204995170 hasConcept C105951970 @default.
- W3204995170 hasConcept C126322002 @default.
- W3204995170 hasConcept C127716648 @default.
- W3204995170 hasConcept C12868164 @default.
- W3204995170 hasConcept C139945424 @default.
- W3204995170 hasConcept C141071460 @default.
- W3204995170 hasConcept C185592680 @default.
- W3204995170 hasConcept C206041023 @default.
- W3204995170 hasConcept C2780493683 @default.
- W3204995170 hasConcept C2989005 @default.
- W3204995170 hasConcept C33923547 @default.
- W3204995170 hasConcept C509974204 @default.
- W3204995170 hasConcept C511355011 @default.
- W3204995170 hasConcept C544821477 @default.
- W3204995170 hasConcept C548259974 @default.
- W3204995170 hasConcept C55493867 @default.
- W3204995170 hasConcept C71924100 @default.
- W3204995170 hasConceptScore W3204995170C104317684 @default.
- W3204995170 hasConceptScore W3204995170C105795698 @default.
- W3204995170 hasConceptScore W3204995170C105951970 @default.
- W3204995170 hasConceptScore W3204995170C126322002 @default.
- W3204995170 hasConceptScore W3204995170C127716648 @default.
- W3204995170 hasConceptScore W3204995170C12868164 @default.
- W3204995170 hasConceptScore W3204995170C139945424 @default.
- W3204995170 hasConceptScore W3204995170C141071460 @default.
- W3204995170 hasConceptScore W3204995170C185592680 @default.
- W3204995170 hasConceptScore W3204995170C206041023 @default.
- W3204995170 hasConceptScore W3204995170C2780493683 @default.
- W3204995170 hasConceptScore W3204995170C2989005 @default.
- W3204995170 hasConceptScore W3204995170C33923547 @default.
- W3204995170 hasConceptScore W3204995170C509974204 @default.
- W3204995170 hasConceptScore W3204995170C511355011 @default.
- W3204995170 hasConceptScore W3204995170C544821477 @default.
- W3204995170 hasConceptScore W3204995170C548259974 @default.
- W3204995170 hasConceptScore W3204995170C55493867 @default.
- W3204995170 hasConceptScore W3204995170C71924100 @default.
- W3204995170 hasFunder F4320321001 @default.
- W3204995170 hasFunder F4320338465 @default.
- W3204995170 hasIssue "1" @default.
- W3204995170 hasLocation W32049951701 @default.