Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205000623> ?p ?o ?g. }
- W3205000623 endingPage "3898" @default.
- W3205000623 startingPage "3898" @default.
- W3205000623 abstract "Automatically extracting buildings from remote sensing images with deep learning is of great significance to urban planning, disaster prevention, change detection, and other applications. Various deep learning models have been proposed to extract building information, showing both strengths and weaknesses in capturing the complex spectral and spatial characteristics of buildings in remote sensing images. To integrate the strengths of individual models and obtain fine-scale spatial and spectral building information, this study proposed a stacking ensemble deep learning model. First, an optimization method for the prediction results of the basic model is proposed based on fully connected conditional random fields (CRFs). On this basis, a stacking ensemble model (SENet) based on a sparse autoencoder integrating U-NET, SegNet, and FCN-8s models is proposed to combine the features of the optimized basic model prediction results. Utilizing several cities in Hebei Province, China as a case study, a building dataset containing attribute labels is established to assess the performance of the proposed model. The proposed SENet is compared with three individual models (U-NET, SegNet and FCN-8s), and the results show that the accuracy of SENet is 0.954, approximately 6.7%, 6.1%, and 9.8% higher than U-NET, SegNet, and FCN-8s models, respectively. The identification of building features, including colors, sizes, shapes, and shadows, is also evaluated, showing that the accuracy, recall, F1 score, and intersection over union (IoU) of the SENet model are higher than those of the three individual models. This suggests that the proposed ensemble model can effectively depict the different features of buildings and provides an alternative approach to building extraction with higher accuracy." @default.
- W3205000623 created "2021-10-25" @default.
- W3205000623 creator A5000594275 @default.
- W3205000623 creator A5009020099 @default.
- W3205000623 creator A5009185228 @default.
- W3205000623 creator A5048891840 @default.
- W3205000623 creator A5055460928 @default.
- W3205000623 creator A5063458428 @default.
- W3205000623 date "2021-09-29" @default.
- W3205000623 modified "2023-10-03" @default.
- W3205000623 title "A Stacking Ensemble Deep Learning Model for Building Extraction from Remote Sensing Images" @default.
- W3205000623 cites W2000692343 @default.
- W3205000623 cites W2000803298 @default.
- W3205000623 cites W2027282554 @default.
- W3205000623 cites W2055886173 @default.
- W3205000623 cites W2076131212 @default.
- W3205000623 cites W2140619591 @default.
- W3205000623 cites W2151103935 @default.
- W3205000623 cites W2161969291 @default.
- W3205000623 cites W2163352848 @default.
- W3205000623 cites W2320230300 @default.
- W3205000623 cites W2523500206 @default.
- W3205000623 cites W2552440277 @default.
- W3205000623 cites W2563705555 @default.
- W3205000623 cites W2588453093 @default.
- W3205000623 cites W2607306668 @default.
- W3205000623 cites W2767031373 @default.
- W3205000623 cites W2774320778 @default.
- W3205000623 cites W2794187036 @default.
- W3205000623 cites W2799918535 @default.
- W3205000623 cites W2888733778 @default.
- W3205000623 cites W2888889084 @default.
- W3205000623 cites W2891957936 @default.
- W3205000623 cites W2901951431 @default.
- W3205000623 cites W2902036000 @default.
- W3205000623 cites W2908320224 @default.
- W3205000623 cites W2912114399 @default.
- W3205000623 cites W2922187519 @default.
- W3205000623 cites W2937933649 @default.
- W3205000623 cites W2939647427 @default.
- W3205000623 cites W2963859992 @default.
- W3205000623 cites W2963881378 @default.
- W3205000623 cites W2966450079 @default.
- W3205000623 cites W2967087542 @default.
- W3205000623 cites W2971095420 @default.
- W3205000623 cites W2993017798 @default.
- W3205000623 cites W2996367318 @default.
- W3205000623 cites W3004265084 @default.
- W3205000623 cites W3044310826 @default.
- W3205000623 cites W3087213302 @default.
- W3205000623 cites W3124953441 @default.
- W3205000623 cites W4241468141 @default.
- W3205000623 doi "https://doi.org/10.3390/rs13193898" @default.
- W3205000623 hasPublicationYear "2021" @default.
- W3205000623 type Work @default.
- W3205000623 sameAs 3205000623 @default.
- W3205000623 citedByCount "15" @default.
- W3205000623 countsByYear W32050006232022 @default.
- W3205000623 countsByYear W32050006232023 @default.
- W3205000623 crossrefType "journal-article" @default.
- W3205000623 hasAuthorship W3205000623A5000594275 @default.
- W3205000623 hasAuthorship W3205000623A5009020099 @default.
- W3205000623 hasAuthorship W3205000623A5009185228 @default.
- W3205000623 hasAuthorship W3205000623A5048891840 @default.
- W3205000623 hasAuthorship W3205000623A5055460928 @default.
- W3205000623 hasAuthorship W3205000623A5063458428 @default.
- W3205000623 hasBestOaLocation W32050006231 @default.
- W3205000623 hasConcept C101738243 @default.
- W3205000623 hasConcept C108583219 @default.
- W3205000623 hasConcept C119857082 @default.
- W3205000623 hasConcept C121332964 @default.
- W3205000623 hasConcept C124101348 @default.
- W3205000623 hasConcept C152565575 @default.
- W3205000623 hasConcept C153180895 @default.
- W3205000623 hasConcept C154945302 @default.
- W3205000623 hasConcept C205649164 @default.
- W3205000623 hasConcept C2775953691 @default.
- W3205000623 hasConcept C33347731 @default.
- W3205000623 hasConcept C41008148 @default.
- W3205000623 hasConcept C46141821 @default.
- W3205000623 hasConcept C58640448 @default.
- W3205000623 hasConcept C64543145 @default.
- W3205000623 hasConceptScore W3205000623C101738243 @default.
- W3205000623 hasConceptScore W3205000623C108583219 @default.
- W3205000623 hasConceptScore W3205000623C119857082 @default.
- W3205000623 hasConceptScore W3205000623C121332964 @default.
- W3205000623 hasConceptScore W3205000623C124101348 @default.
- W3205000623 hasConceptScore W3205000623C152565575 @default.
- W3205000623 hasConceptScore W3205000623C153180895 @default.
- W3205000623 hasConceptScore W3205000623C154945302 @default.
- W3205000623 hasConceptScore W3205000623C205649164 @default.
- W3205000623 hasConceptScore W3205000623C2775953691 @default.
- W3205000623 hasConceptScore W3205000623C33347731 @default.
- W3205000623 hasConceptScore W3205000623C41008148 @default.
- W3205000623 hasConceptScore W3205000623C46141821 @default.
- W3205000623 hasConceptScore W3205000623C58640448 @default.
- W3205000623 hasConceptScore W3205000623C64543145 @default.
- W3205000623 hasFunder F4320321001 @default.