Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205005165> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3205005165 endingPage "2945" @default.
- W3205005165 startingPage "2938" @default.
- W3205005165 abstract "Agriculture is our country's predominant source of revenue and the cornerstone of our prosperity. Landowners should be equipped with crop monitoring to cooperate with current predicaments such as waterlogging, unrestrained expenditures attributable to requirement discrepancies, and weather volatility. Crop production yields attributable to unpredictable environmental variations, inadequate sanitation capabilities, soil moisture degradation, and conventional farming perspectives are all tackled. In agriculture, one such digitalization used to determine crop productivity is reinforcement learning. To anticipate crop production, diverse reinforcement learning algorithms such as prognostication, segmentation, validation, and aggregations are used. Some of the mechanisms was using to incorporate prognostication comprise convolution neural networks, multilayer preceptor, sequential and regression, prediction trees, and Cloister Bayes. The researchers, on the other hand, confront a hurdle in selecting the suitable methodology from the set of accessible methods for crops they have specified. The main aim of this research is to investigate how optimization algorithms can be used to anticipate crop production. In the framework of massive data processing, a method for forecasting crop production using classification techniques has been presented." @default.
- W3205005165 created "2021-10-25" @default.
- W3205005165 creator A5007158923 @default.
- W3205005165 creator A5011854610 @default.
- W3205005165 creator A5011883008 @default.
- W3205005165 creator A5021828548 @default.
- W3205005165 creator A5022378824 @default.
- W3205005165 creator A5028605239 @default.
- W3205005165 date "2021-10-01" @default.
- W3205005165 modified "2023-09-28" @default.
- W3205005165 title "Analysis of Machine Learning Techniques for Agriculture Crop Predicting System" @default.
- W3205005165 hasPublicationYear "2021" @default.
- W3205005165 type Work @default.
- W3205005165 sameAs 3205005165 @default.
- W3205005165 citedByCount "0" @default.
- W3205005165 crossrefType "journal-article" @default.
- W3205005165 hasAuthorship W3205005165A5007158923 @default.
- W3205005165 hasAuthorship W3205005165A5011854610 @default.
- W3205005165 hasAuthorship W3205005165A5011883008 @default.
- W3205005165 hasAuthorship W3205005165A5021828548 @default.
- W3205005165 hasAuthorship W3205005165A5022378824 @default.
- W3205005165 hasAuthorship W3205005165A5028605239 @default.
- W3205005165 hasConcept C118518473 @default.
- W3205005165 hasConcept C119857082 @default.
- W3205005165 hasConcept C127413603 @default.
- W3205005165 hasConcept C139719470 @default.
- W3205005165 hasConcept C154945302 @default.
- W3205005165 hasConcept C162324750 @default.
- W3205005165 hasConcept C166957645 @default.
- W3205005165 hasConcept C195740040 @default.
- W3205005165 hasConcept C205649164 @default.
- W3205005165 hasConcept C2778348673 @default.
- W3205005165 hasConcept C41008148 @default.
- W3205005165 hasConcept C58640448 @default.
- W3205005165 hasConcept C88463610 @default.
- W3205005165 hasConceptScore W3205005165C118518473 @default.
- W3205005165 hasConceptScore W3205005165C119857082 @default.
- W3205005165 hasConceptScore W3205005165C127413603 @default.
- W3205005165 hasConceptScore W3205005165C139719470 @default.
- W3205005165 hasConceptScore W3205005165C154945302 @default.
- W3205005165 hasConceptScore W3205005165C162324750 @default.
- W3205005165 hasConceptScore W3205005165C166957645 @default.
- W3205005165 hasConceptScore W3205005165C195740040 @default.
- W3205005165 hasConceptScore W3205005165C205649164 @default.
- W3205005165 hasConceptScore W3205005165C2778348673 @default.
- W3205005165 hasConceptScore W3205005165C41008148 @default.
- W3205005165 hasConceptScore W3205005165C58640448 @default.
- W3205005165 hasConceptScore W3205005165C88463610 @default.
- W3205005165 hasIssue "1" @default.
- W3205005165 hasLocation W32050051651 @default.
- W3205005165 hasOpenAccess W3205005165 @default.
- W3205005165 hasPrimaryLocation W32050051651 @default.
- W3205005165 hasRelatedWork W2308708633 @default.
- W3205005165 hasRelatedWork W2629371245 @default.
- W3205005165 hasRelatedWork W2806437248 @default.
- W3205005165 hasRelatedWork W2913478073 @default.
- W3205005165 hasRelatedWork W2963336641 @default.
- W3205005165 hasRelatedWork W3000633789 @default.
- W3205005165 hasRelatedWork W3042530621 @default.
- W3205005165 hasRelatedWork W3087951949 @default.
- W3205005165 hasRelatedWork W3111639298 @default.
- W3205005165 hasRelatedWork W3112852795 @default.
- W3205005165 hasRelatedWork W3118283527 @default.
- W3205005165 hasRelatedWork W3126027138 @default.
- W3205005165 hasRelatedWork W3142740975 @default.
- W3205005165 hasRelatedWork W3172321593 @default.
- W3205005165 hasRelatedWork W3172350297 @default.
- W3205005165 hasRelatedWork W3177185834 @default.
- W3205005165 hasRelatedWork W3179197095 @default.
- W3205005165 hasRelatedWork W3195737212 @default.
- W3205005165 hasRelatedWork W2802872268 @default.
- W3205005165 hasRelatedWork W3203515296 @default.
- W3205005165 hasVolume "10" @default.
- W3205005165 isParatext "false" @default.
- W3205005165 isRetracted "false" @default.
- W3205005165 magId "3205005165" @default.
- W3205005165 workType "article" @default.