Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205008603> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3205008603 abstract "<h3>Introduction/Background*</h3> In advanced stage high grade serous ovarian cancer (HGSOC), the introduction of maximal surgical effort without compromising peri-operative management and subsequent recovery to achieve complete cytoreduction, requires Critical Care Unit (CCU) availability. This paradigm shift prompts the development of tools to accurately predict CCU admission following cytoreductive surgery. Modern data mining technology, such as Machine Learning (ML) could be helpful in accurately predicting CCU admissions to improve standards of care. We developed a framework to improve the accuracy of predicting CCU admission in HGSOC patients by use of ML algorithms (figure 1). <h3>Methodology</h3> A cohort of 291 advanced stage HGSOC patients, who underwent surgical cytoreduction from Jan 2014 to Dec 2019, was selected from the ovarian database. They were randomly assigned to training (60%) and test (40%) sub-cohorts. Forward selection and backward stepwise regression were employed to screen independent pre- and intra-operative variables. Linear (LDA), Quadratic (QDA), and non-linear distance (ANN and KNN) ML models were employed to derive predictive information. These methods were tested against conventional linear regression (LR). Model performance was evaluated by prediction accuracy, sensitivity, specificity, and F1 scores. <h3>Result(s)*</h3> We identified 56/291(19.2%) CCU admissions. For the outcome of CCU admission, the prediction accuracies were higher for LDA (0.90) and QDA (0.93) compared with LR (0.84) when all the variables were included in the in-built model. Feature selection identified pre-treatment albumin, surgical complexity score, estimated blood loss, operative time, and bowel resection with stoma formation as the most significant prediction features. With feature selection, the prediction accuracies were higher for LDA (0.89) and KNN (0.86) compared with LR (0.82). Admission to CCU was associated with increased length of stay (<i>P</i> = 0.000), and decreased number of postoperative complications (<i>P</i> = 0.001). <h3>Conclusion*</h3> Herein, ML algorithms accurately predicted HGSOC patients, who required CCU admission following their cytoreductive surgery. Linear discriminant analysis was consistently more predictive than LR for CCU admission, irrespective of the number of features included in the analysis. Limited, potentially modifiable, mostly intra-operative factors contributing to CCU admission were identified and suggest areas for targeted interventions." @default.
- W3205008603 created "2021-10-25" @default.
- W3205008603 creator A5000859614 @default.
- W3205008603 creator A5003636296 @default.
- W3205008603 creator A5018031094 @default.
- W3205008603 creator A5018782375 @default.
- W3205008603 creator A5024057642 @default.
- W3205008603 creator A5033105983 @default.
- W3205008603 creator A5042387131 @default.
- W3205008603 creator A5043325013 @default.
- W3205008603 creator A5062912414 @default.
- W3205008603 creator A5066235986 @default.
- W3205008603 creator A5071835845 @default.
- W3205008603 creator A5078432596 @default.
- W3205008603 creator A5085812335 @default.
- W3205008603 date "2021-10-01" @default.
- W3205008603 modified "2023-09-23" @default.
- W3205008603 title "456 Machine Learning outperforms logistic regression in predicting accuracy of CCU admission for high grade serous advanced ovarian cancer patients" @default.
- W3205008603 doi "https://doi.org/10.1136/ijgc-2021-esgo.304" @default.
- W3205008603 hasPublicationYear "2021" @default.
- W3205008603 type Work @default.
- W3205008603 sameAs 3205008603 @default.
- W3205008603 citedByCount "0" @default.
- W3205008603 crossrefType "proceedings-article" @default.
- W3205008603 hasAuthorship W3205008603A5000859614 @default.
- W3205008603 hasAuthorship W3205008603A5003636296 @default.
- W3205008603 hasAuthorship W3205008603A5018031094 @default.
- W3205008603 hasAuthorship W3205008603A5018782375 @default.
- W3205008603 hasAuthorship W3205008603A5024057642 @default.
- W3205008603 hasAuthorship W3205008603A5033105983 @default.
- W3205008603 hasAuthorship W3205008603A5042387131 @default.
- W3205008603 hasAuthorship W3205008603A5043325013 @default.
- W3205008603 hasAuthorship W3205008603A5062912414 @default.
- W3205008603 hasAuthorship W3205008603A5066235986 @default.
- W3205008603 hasAuthorship W3205008603A5071835845 @default.
- W3205008603 hasAuthorship W3205008603A5078432596 @default.
- W3205008603 hasAuthorship W3205008603A5085812335 @default.
- W3205008603 hasBestOaLocation W32050086031 @default.
- W3205008603 hasConcept C119857082 @default.
- W3205008603 hasConcept C146357865 @default.
- W3205008603 hasConcept C148483581 @default.
- W3205008603 hasConcept C151730666 @default.
- W3205008603 hasConcept C151956035 @default.
- W3205008603 hasConcept C154945302 @default.
- W3205008603 hasConcept C170964787 @default.
- W3205008603 hasConcept C41008148 @default.
- W3205008603 hasConcept C48921125 @default.
- W3205008603 hasConcept C71924100 @default.
- W3205008603 hasConcept C86803240 @default.
- W3205008603 hasConceptScore W3205008603C119857082 @default.
- W3205008603 hasConceptScore W3205008603C146357865 @default.
- W3205008603 hasConceptScore W3205008603C148483581 @default.
- W3205008603 hasConceptScore W3205008603C151730666 @default.
- W3205008603 hasConceptScore W3205008603C151956035 @default.
- W3205008603 hasConceptScore W3205008603C154945302 @default.
- W3205008603 hasConceptScore W3205008603C170964787 @default.
- W3205008603 hasConceptScore W3205008603C41008148 @default.
- W3205008603 hasConceptScore W3205008603C48921125 @default.
- W3205008603 hasConceptScore W3205008603C71924100 @default.
- W3205008603 hasConceptScore W3205008603C86803240 @default.
- W3205008603 hasLocation W32050086031 @default.
- W3205008603 hasOpenAccess W3205008603 @default.
- W3205008603 hasPrimaryLocation W32050086031 @default.
- W3205008603 hasRelatedWork W2143517695 @default.
- W3205008603 hasRelatedWork W2973799232 @default.
- W3205008603 hasRelatedWork W3016925281 @default.
- W3205008603 hasRelatedWork W3174196512 @default.
- W3205008603 hasRelatedWork W3200179079 @default.
- W3205008603 hasRelatedWork W4212852473 @default.
- W3205008603 hasRelatedWork W4225307033 @default.
- W3205008603 hasRelatedWork W4225360065 @default.
- W3205008603 hasRelatedWork W4293525103 @default.
- W3205008603 hasRelatedWork W4295514622 @default.
- W3205008603 isParatext "false" @default.
- W3205008603 isRetracted "false" @default.
- W3205008603 magId "3205008603" @default.
- W3205008603 workType "article" @default.