Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205041491> ?p ?o ?g. }
- W3205041491 abstract "Accurate determination of fuel properties of complex mixtures over a wide range of pressure and temperature conditions is essential to utilizing alternative fuels. The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels. Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach. Here, Gaussian Process (GP) and probabilistic generative models are adopted. GP is a popular non-parametric Bayesian approach to build surrogate models mainly due to its capacity to handle the aleatory and epistemic uncertainties. Generative models have shown the ability of deep neural networks employed with the same intent. In this work, ML analysis is focused on a particular property, the fuel density, but it can also be extended to other physicochemical properties. This study explores the versatility of the ML models to handle multi-fidelity data. The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions." @default.
- W3205041491 created "2021-10-25" @default.
- W3205041491 creator A5048680094 @default.
- W3205041491 creator A5053197044 @default.
- W3205041491 creator A5064548129 @default.
- W3205041491 creator A5083112012 @default.
- W3205041491 creator A5087183404 @default.
- W3205041491 creator A5088131086 @default.
- W3205041491 date "2021-10-18" @default.
- W3205041491 modified "2023-09-25" @default.
- W3205041491 title "Prediction of liquid fuel properties using machine learning models with Gaussian processes and probabilistic conditional generative learning." @default.
- W3205041491 cites W1674088618 @default.
- W3205041491 cites W1746819321 @default.
- W3205041491 cites W1867459696 @default.
- W3205041491 cites W1932326239 @default.
- W3205041491 cites W1959608418 @default.
- W3205041491 cites W1972777769 @default.
- W3205041491 cites W1977046327 @default.
- W3205041491 cites W1988613058 @default.
- W3205041491 cites W2015160447 @default.
- W3205041491 cites W2024424774 @default.
- W3205041491 cites W2025040771 @default.
- W3205041491 cites W2051434435 @default.
- W3205041491 cites W2054002269 @default.
- W3205041491 cites W2056049232 @default.
- W3205041491 cites W2058938611 @default.
- W3205041491 cites W2064796983 @default.
- W3205041491 cites W2071475089 @default.
- W3205041491 cites W2078402834 @default.
- W3205041491 cites W2079078736 @default.
- W3205041491 cites W2081693079 @default.
- W3205041491 cites W2082640612 @default.
- W3205041491 cites W2113207845 @default.
- W3205041491 cites W2128572087 @default.
- W3205041491 cites W2171268876 @default.
- W3205041491 cites W2187873814 @default.
- W3205041491 cites W2313371867 @default.
- W3205041491 cites W2503053600 @default.
- W3205041491 cites W2586938721 @default.
- W3205041491 cites W2604054797 @default.
- W3205041491 cites W2732319205 @default.
- W3205041491 cites W2767738054 @default.
- W3205041491 cites W2781967213 @default.
- W3205041491 cites W2782326559 @default.
- W3205041491 cites W2806589038 @default.
- W3205041491 cites W2808338577 @default.
- W3205041491 cites W2888639978 @default.
- W3205041491 cites W2900369848 @default.
- W3205041491 cites W2910203735 @default.
- W3205041491 cites W2913281274 @default.
- W3205041491 cites W2954572800 @default.
- W3205041491 cites W2959257726 @default.
- W3205041491 cites W2963716063 @default.
- W3205041491 cites W2964121744 @default.
- W3205041491 cites W2973100519 @default.
- W3205041491 cites W2975765458 @default.
- W3205041491 cites W2995072897 @default.
- W3205041491 cites W2996934208 @default.
- W3205041491 cites W3019156468 @default.
- W3205041491 cites W3026604327 @default.
- W3205041491 cites W3026694392 @default.
- W3205041491 cites W3043638934 @default.
- W3205041491 cites W3047731570 @default.
- W3205041491 cites W3093494904 @default.
- W3205041491 cites W3155608206 @default.
- W3205041491 cites W3157207109 @default.
- W3205041491 cites W3157558517 @default.
- W3205041491 cites W3165111305 @default.
- W3205041491 cites W3198684232 @default.
- W3205041491 cites W2189377456 @default.
- W3205041491 hasPublicationYear "2021" @default.
- W3205041491 type Work @default.
- W3205041491 sameAs 3205041491 @default.
- W3205041491 citedByCount "0" @default.
- W3205041491 crossrefType "posted-content" @default.
- W3205041491 hasAuthorship W3205041491A5048680094 @default.
- W3205041491 hasAuthorship W3205041491A5053197044 @default.
- W3205041491 hasAuthorship W3205041491A5064548129 @default.
- W3205041491 hasAuthorship W3205041491A5083112012 @default.
- W3205041491 hasAuthorship W3205041491A5087183404 @default.
- W3205041491 hasAuthorship W3205041491A5088131086 @default.
- W3205041491 hasConcept C105795698 @default.
- W3205041491 hasConcept C117251300 @default.
- W3205041491 hasConcept C119857082 @default.
- W3205041491 hasConcept C127413603 @default.
- W3205041491 hasConcept C146978453 @default.
- W3205041491 hasConcept C147597530 @default.
- W3205041491 hasConcept C154945302 @default.
- W3205041491 hasConcept C163716315 @default.
- W3205041491 hasConcept C167966045 @default.
- W3205041491 hasConcept C185592680 @default.
- W3205041491 hasConcept C204323151 @default.
- W3205041491 hasConcept C2776459999 @default.
- W3205041491 hasConcept C32230216 @default.
- W3205041491 hasConcept C33923547 @default.
- W3205041491 hasConcept C39890363 @default.
- W3205041491 hasConcept C41008148 @default.
- W3205041491 hasConcept C49937458 @default.
- W3205041491 hasConcept C50644808 @default.
- W3205041491 hasConcept C61326573 @default.