Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205065536> ?p ?o ?g. }
- W3205065536 endingPage "2591" @default.
- W3205065536 startingPage "2591" @default.
- W3205065536 abstract "Let (X,d,μ) be a space of homogeneous type in the sense of Coifman and Weiss. In this article, the author develops a partial theory of paraproducts {Πj}j=13 defined via approximations of the identity with exponential decay (and integration 1), which are extensions of paraproducts defined via regular wavelets. Precisely, the author first obtains the boundedness of Π3 on Hardy spaces and then, via the methods of interpolation and the well-known T(1) theorem, establishes the endpoint estimates for {Πj}j=13. The main novelty of this paper is the application of the Abel summation formula to the establishment of some relations among the boundedness of {Πj}j=13, which has independent interests. It is also remarked that, throughout this article, μ is not assumed to satisfy the reverse doubling condition." @default.
- W3205065536 created "2021-10-25" @default.
- W3205065536 creator A5019489916 @default.
- W3205065536 date "2021-10-15" @default.
- W3205065536 modified "2023-10-18" @default.
- W3205065536 title "Boundedness of Some Paraproducts on Spaces of Homogeneous Type" @default.
- W3205065536 cites W1489373617 @default.
- W3205065536 cites W1551815538 @default.
- W3205065536 cites W1951621376 @default.
- W3205065536 cites W1977652103 @default.
- W3205065536 cites W1982418511 @default.
- W3205065536 cites W1983516815 @default.
- W3205065536 cites W1990182066 @default.
- W3205065536 cites W2004411077 @default.
- W3205065536 cites W2008664158 @default.
- W3205065536 cites W2019592522 @default.
- W3205065536 cites W2033423952 @default.
- W3205065536 cites W2034330079 @default.
- W3205065536 cites W2043876702 @default.
- W3205065536 cites W2045633063 @default.
- W3205065536 cites W2051711869 @default.
- W3205065536 cites W2052368408 @default.
- W3205065536 cites W2081462990 @default.
- W3205065536 cites W2081601543 @default.
- W3205065536 cites W2083129101 @default.
- W3205065536 cites W2083367976 @default.
- W3205065536 cites W2091571469 @default.
- W3205065536 cites W2092891252 @default.
- W3205065536 cites W2095159782 @default.
- W3205065536 cites W2129695704 @default.
- W3205065536 cites W2466971504 @default.
- W3205065536 cites W2592223562 @default.
- W3205065536 cites W2625220079 @default.
- W3205065536 cites W2757729526 @default.
- W3205065536 cites W2837999320 @default.
- W3205065536 cites W2887723901 @default.
- W3205065536 cites W2897868414 @default.
- W3205065536 cites W2919667001 @default.
- W3205065536 cites W2963045342 @default.
- W3205065536 cites W2963089797 @default.
- W3205065536 cites W2963172964 @default.
- W3205065536 cites W2963242743 @default.
- W3205065536 cites W2963298659 @default.
- W3205065536 cites W2963574804 @default.
- W3205065536 cites W2963604701 @default.
- W3205065536 cites W2964010077 @default.
- W3205065536 cites W2964053762 @default.
- W3205065536 cites W2964254485 @default.
- W3205065536 cites W2994754517 @default.
- W3205065536 cites W3003136627 @default.
- W3205065536 cites W3007094563 @default.
- W3205065536 cites W3010572935 @default.
- W3205065536 cites W3035896015 @default.
- W3205065536 cites W3046651686 @default.
- W3205065536 cites W3085657936 @default.
- W3205065536 cites W3094090027 @default.
- W3205065536 cites W3106507931 @default.
- W3205065536 cites W3138940776 @default.
- W3205065536 cites W3142474707 @default.
- W3205065536 doi "https://doi.org/10.3390/math9202591" @default.
- W3205065536 hasPublicationYear "2021" @default.
- W3205065536 type Work @default.
- W3205065536 sameAs 3205065536 @default.
- W3205065536 citedByCount "0" @default.
- W3205065536 crossrefType "journal-article" @default.
- W3205065536 hasAuthorship W3205065536A5019489916 @default.
- W3205065536 hasBestOaLocation W32050655361 @default.
- W3205065536 hasConcept C103642545 @default.
- W3205065536 hasConcept C111919701 @default.
- W3205065536 hasConcept C114614502 @default.
- W3205065536 hasConcept C121332964 @default.
- W3205065536 hasConcept C121684516 @default.
- W3205065536 hasConcept C134306372 @default.
- W3205065536 hasConcept C137800194 @default.
- W3205065536 hasConcept C138885662 @default.
- W3205065536 hasConcept C151376022 @default.
- W3205065536 hasConcept C154945302 @default.
- W3205065536 hasConcept C18903297 @default.
- W3205065536 hasConcept C202444582 @default.
- W3205065536 hasConcept C24890656 @default.
- W3205065536 hasConcept C27206212 @default.
- W3205065536 hasConcept C2777299769 @default.
- W3205065536 hasConcept C2778355321 @default.
- W3205065536 hasConcept C2778572836 @default.
- W3205065536 hasConcept C2778738651 @default.
- W3205065536 hasConcept C33923547 @default.
- W3205065536 hasConcept C41008148 @default.
- W3205065536 hasConcept C42178598 @default.
- W3205065536 hasConcept C47432892 @default.
- W3205065536 hasConcept C502989409 @default.
- W3205065536 hasConcept C66882249 @default.
- W3205065536 hasConcept C86803240 @default.
- W3205065536 hasConceptScore W3205065536C103642545 @default.
- W3205065536 hasConceptScore W3205065536C111919701 @default.
- W3205065536 hasConceptScore W3205065536C114614502 @default.
- W3205065536 hasConceptScore W3205065536C121332964 @default.
- W3205065536 hasConceptScore W3205065536C121684516 @default.
- W3205065536 hasConceptScore W3205065536C134306372 @default.