Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205082786> ?p ?o ?g. }
- W3205082786 abstract "One of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events between two drugs. Accurately predicting interaction events of two drugs is more useful for researchers to study the mechanism of the interaction of two drugs. In the present study, we propose a novel method, MDF-SA-DDI, which predicts drug-drug interaction (DDI) events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. MDF-SA-DDI is mainly composed of two parts: multi-source drug fusion and multi-source feature fusion. First, we combine two drugs in four different ways and input the combined drug feature representation into four different drug fusion networks (Siamese network, convolutional neural network and two auto-encoders) to obtain the latent feature vectors of the drug pairs, in which the two auto-encoders have the same structure, and their main difference is the number of neurons in the input layer of the two auto-encoders. Then, we use transformer blocks that include self-attention mechanism to perform latent feature fusion. We conducted experiments on three different tasks with two datasets. On the small dataset, the area under the precision-recall-curve (AUPR) and F1 scores of our method on task 1 reached 0.9737 and 0.8878, respectively, which were better than the state-of-the-art method. On the large dataset, the AUPR and F1 scores of our method on task 1 reached 0.9773 and 0.9117, respectively. In task 2 and task 3 of two datasets, our method also achieved the same or better performance as the state-of-the-art method. More importantly, the case studies on five DDI events are conducted and achieved satisfactory performance. The source codes and data are available at https://github.com/ShenggengLin/MDF-SA-DDI." @default.
- W3205082786 created "2021-10-25" @default.
- W3205082786 creator A5013911017 @default.
- W3205082786 creator A5014672057 @default.
- W3205082786 creator A5037638343 @default.
- W3205082786 creator A5041491902 @default.
- W3205082786 creator A5051383635 @default.
- W3205082786 creator A5070038394 @default.
- W3205082786 creator A5071001401 @default.
- W3205082786 creator A5076043452 @default.
- W3205082786 creator A5081142384 @default.
- W3205082786 creator A5087022428 @default.
- W3205082786 creator A5091803900 @default.
- W3205082786 date "2021-10-20" @default.
- W3205082786 modified "2023-10-15" @default.
- W3205082786 title "MDF-SA-DDI: predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism" @default.
- W3205082786 cites W2005568709 @default.
- W3205082786 cites W2013181441 @default.
- W3205082786 cites W2024985940 @default.
- W3205082786 cites W2089559915 @default.
- W3205082786 cites W2109482131 @default.
- W3205082786 cites W2120317715 @default.
- W3205082786 cites W2135037015 @default.
- W3205082786 cites W2141959953 @default.
- W3205082786 cites W2264517602 @default.
- W3205082786 cites W2469049024 @default.
- W3205082786 cites W2570516417 @default.
- W3205082786 cites W2589489260 @default.
- W3205082786 cites W2591704587 @default.
- W3205082786 cites W2761525601 @default.
- W3205082786 cites W2765742249 @default.
- W3205082786 cites W2786016794 @default.
- W3205082786 cites W2790602452 @default.
- W3205082786 cites W2798133167 @default.
- W3205082786 cites W2799720196 @default.
- W3205082786 cites W2802200505 @default.
- W3205082786 cites W2811036446 @default.
- W3205082786 cites W2884561390 @default.
- W3205082786 cites W2900758217 @default.
- W3205082786 cites W2901039866 @default.
- W3205082786 cites W2914823953 @default.
- W3205082786 cites W2937594636 @default.
- W3205082786 cites W2940601839 @default.
- W3205082786 cites W2946438679 @default.
- W3205082786 cites W2965042294 @default.
- W3205082786 cites W2965979634 @default.
- W3205082786 cites W2965993245 @default.
- W3205082786 cites W2974658886 @default.
- W3205082786 cites W2981142240 @default.
- W3205082786 cites W2995738274 @default.
- W3205082786 cites W2997159096 @default.
- W3205082786 cites W2997277473 @default.
- W3205082786 cites W3018302085 @default.
- W3205082786 cites W3024894285 @default.
- W3205082786 cites W3032897120 @default.
- W3205082786 cites W3047056765 @default.
- W3205082786 cites W3088680691 @default.
- W3205082786 cites W3089843526 @default.
- W3205082786 cites W3126807607 @default.
- W3205082786 cites W3138731621 @default.
- W3205082786 cites W3139253280 @default.
- W3205082786 cites W3157889929 @default.
- W3205082786 cites W3183966140 @default.
- W3205082786 doi "https://doi.org/10.1093/bib/bbab421" @default.
- W3205082786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34671814" @default.
- W3205082786 hasPublicationYear "2021" @default.
- W3205082786 type Work @default.
- W3205082786 sameAs 3205082786 @default.
- W3205082786 citedByCount "36" @default.
- W3205082786 countsByYear W32050827862022 @default.
- W3205082786 countsByYear W32050827862023 @default.
- W3205082786 crossrefType "journal-article" @default.
- W3205082786 hasAuthorship W3205082786A5013911017 @default.
- W3205082786 hasAuthorship W3205082786A5014672057 @default.
- W3205082786 hasAuthorship W3205082786A5037638343 @default.
- W3205082786 hasAuthorship W3205082786A5041491902 @default.
- W3205082786 hasAuthorship W3205082786A5051383635 @default.
- W3205082786 hasAuthorship W3205082786A5070038394 @default.
- W3205082786 hasAuthorship W3205082786A5071001401 @default.
- W3205082786 hasAuthorship W3205082786A5076043452 @default.
- W3205082786 hasAuthorship W3205082786A5081142384 @default.
- W3205082786 hasAuthorship W3205082786A5087022428 @default.
- W3205082786 hasAuthorship W3205082786A5091803900 @default.
- W3205082786 hasConcept C103038307 @default.
- W3205082786 hasConcept C111472728 @default.
- W3205082786 hasConcept C111919701 @default.
- W3205082786 hasConcept C118505674 @default.
- W3205082786 hasConcept C119599485 @default.
- W3205082786 hasConcept C119857082 @default.
- W3205082786 hasConcept C127413603 @default.
- W3205082786 hasConcept C138885662 @default.
- W3205082786 hasConcept C153180895 @default.
- W3205082786 hasConcept C154945302 @default.
- W3205082786 hasConcept C158525013 @default.
- W3205082786 hasConcept C165801399 @default.
- W3205082786 hasConcept C173414695 @default.
- W3205082786 hasConcept C2776401178 @default.
- W3205082786 hasConcept C2780035454 @default.
- W3205082786 hasConcept C41008148 @default.
- W3205082786 hasConcept C41895202 @default.