Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205127119> ?p ?o ?g. }
- W3205127119 endingPage "e27363" @default.
- W3205127119 startingPage "e27363" @default.
- W3205127119 abstract "Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures, such as corneal imaging, aberrometry, or biomechanical measurements.The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical keratoconus and equivalent definitions.For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations.We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported in this study.Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve early detection and stratification of patients for early treatment to prevent disease progression." @default.
- W3205127119 created "2021-10-25" @default.
- W3205127119 creator A5003394008 @default.
- W3205127119 creator A5003831591 @default.
- W3205127119 creator A5015985989 @default.
- W3205127119 creator A5016454136 @default.
- W3205127119 creator A5019091666 @default.
- W3205127119 creator A5021253891 @default.
- W3205127119 creator A5024736311 @default.
- W3205127119 creator A5041239954 @default.
- W3205127119 creator A5042102084 @default.
- W3205127119 creator A5048860979 @default.
- W3205127119 creator A5068050684 @default.
- W3205127119 creator A5074165798 @default.
- W3205127119 creator A5076864988 @default.
- W3205127119 creator A5079091652 @default.
- W3205127119 creator A5080365400 @default.
- W3205127119 creator A5083903120 @default.
- W3205127119 date "2021-12-13" @default.
- W3205127119 modified "2023-09-29" @default.
- W3205127119 title "Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review" @default.
- W3205127119 cites W1493519172 @default.
- W3205127119 cites W1535262410 @default.
- W3205127119 cites W1602799071 @default.
- W3205127119 cites W1740495435 @default.
- W3205127119 cites W1964565887 @default.
- W3205127119 cites W1974273751 @default.
- W3205127119 cites W1979631398 @default.
- W3205127119 cites W1983311424 @default.
- W3205127119 cites W1998709864 @default.
- W3205127119 cites W1999033787 @default.
- W3205127119 cites W2007739294 @default.
- W3205127119 cites W2009427132 @default.
- W3205127119 cites W2010090512 @default.
- W3205127119 cites W2010992449 @default.
- W3205127119 cites W2019881525 @default.
- W3205127119 cites W2020730207 @default.
- W3205127119 cites W2021800919 @default.
- W3205127119 cites W2029514412 @default.
- W3205127119 cites W2031805454 @default.
- W3205127119 cites W2033750708 @default.
- W3205127119 cites W2033813856 @default.
- W3205127119 cites W2035834983 @default.
- W3205127119 cites W2068361112 @default.
- W3205127119 cites W2080149740 @default.
- W3205127119 cites W2082234342 @default.
- W3205127119 cites W2107638293 @default.
- W3205127119 cites W2108372637 @default.
- W3205127119 cites W2125662694 @default.
- W3205127119 cites W2128186144 @default.
- W3205127119 cites W2132748321 @default.
- W3205127119 cites W2156098321 @default.
- W3205127119 cites W2166179859 @default.
- W3205127119 cites W2168081474 @default.
- W3205127119 cites W2261164374 @default.
- W3205127119 cites W2290484712 @default.
- W3205127119 cites W2293268029 @default.
- W3205127119 cites W2295658016 @default.
- W3205127119 cites W2311347471 @default.
- W3205127119 cites W2319524494 @default.
- W3205127119 cites W2330599314 @default.
- W3205127119 cites W2337920748 @default.
- W3205127119 cites W2418388634 @default.
- W3205127119 cites W246286872 @default.
- W3205127119 cites W2521211919 @default.
- W3205127119 cites W2560602529 @default.
- W3205127119 cites W2563580388 @default.
- W3205127119 cites W2567182937 @default.
- W3205127119 cites W2595566552 @default.
- W3205127119 cites W2598233371 @default.
- W3205127119 cites W2616178434 @default.
- W3205127119 cites W2725383073 @default.
- W3205127119 cites W2728958029 @default.
- W3205127119 cites W2729319312 @default.
- W3205127119 cites W2752747624 @default.
- W3205127119 cites W2768083649 @default.
- W3205127119 cites W2769422756 @default.
- W3205127119 cites W2771035727 @default.
- W3205127119 cites W2783737743 @default.
- W3205127119 cites W2787894218 @default.
- W3205127119 cites W2809659847 @default.
- W3205127119 cites W2886173263 @default.
- W3205127119 cites W2898192966 @default.
- W3205127119 cites W2900083515 @default.
- W3205127119 cites W2904370921 @default.
- W3205127119 cites W2911964244 @default.
- W3205127119 cites W2921253110 @default.
- W3205127119 cites W2942329488 @default.
- W3205127119 cites W2946953601 @default.
- W3205127119 cites W2948607806 @default.
- W3205127119 cites W2964021290 @default.
- W3205127119 cites W2972338624 @default.
- W3205127119 cites W2980179095 @default.
- W3205127119 cites W2981321465 @default.
- W3205127119 cites W2996824246 @default.
- W3205127119 cites W3001006670 @default.
- W3205127119 cites W3013712174 @default.
- W3205127119 cites W3014460078 @default.