Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205155364> ?p ?o ?g. }
- W3205155364 endingPage "4090" @default.
- W3205155364 startingPage "4080" @default.
- W3205155364 abstract "ConspectusA key theme of heterogeneous catalysis research is achieving control of the environment surrounding the active site to precisely steer the reactivity toward desired reaction products. One method toward this goal has been the use of organic ligands or self-assembled monolayers (SAMs) on metal nanoparticles. Metal-bound SAMs are typically employed to improve catalyst selectivity but often decrease the reaction rate as a result of site blocking from the ligands. Recently, the use of metal oxide-bound organic modifiers such as organophosphonic acid (PA) SAMs has shown promise as an additional method for tuning reactions on metal oxide surfaces as well as modifying oxide-supported metal catalysts. In this Account, we summarize recent approaches to enhance catalyst performance with oxide-bound monolayers. These approaches include (1) modification of metal oxide catalysts to tune surface reactions, (2) formation of SAMs on the oxide component of supported metal catalysts to modify sites at the metal-support interface, and (3) enhancement of catalyst performance (e.g., stability) through modification of sites remote from the active sites.Both the headgroups and organic tail groups of PA SAMs or other ligands can influence reactions on metal oxide surfaces. Binding of the headgroup can selectively poison certain active sites, altering the selectivity in a manner analogous to metal-bound ligands (at the expense of active site quantity). Moreover, tail groups can be functionalized to interact favorably with reactants and intermediates, for instance through dipole-dipole interactions. On supported metal catalysts like Pt/Al2O3, PA SAMs can selectively form on the oxide support. This selective deposition allows for modification of the metal-support interface with minimal blockage of metal sites. PA headgroups were shown to provide tunable acid sites at the interface, dramatically improving hydrodeoxygenation rates of various alcohols. Additionally, organic tail functionality was used to activate or stabilize specific reactants at the interface, such as with the use of amine-functionalized PAs to stabilize chemisorption of CO2 during the reverse water gas shift reaction. PAs have also been found to affect the electronic properties of bulk metal sites through long-range electron withdrawal via the oxide, providing an additional avenue to tune catalytic behavior. Finally, organic modifiers were shown to enhance catalytic performance without directly modifying the active site. For instance, in biphasic liquid environments the modification of catalyst particles with hydrophobic or hydrophilic SAMs shifts the selectivity of multipath reactions on the basis of the hydrophobicities of different intermediates and products. As another long-range effect, the deposition of ligands on oxide supports improved catalyst stability through both improved resistance to sintering and suppression of active site poisoning. The recent contributions discussed in this Account demonstrate the versatility and significant potential for the approach of modifying catalysts with oxide-bound organic monolayers." @default.
- W3205155364 created "2021-10-25" @default.
- W3205155364 creator A5038231349 @default.
- W3205155364 creator A5043033165 @default.
- W3205155364 date "2021-10-13" @default.
- W3205155364 modified "2023-10-15" @default.
- W3205155364 title "Controlling Heterogeneous Catalysis with Organic Monolayers on Metal Oxides" @default.
- W3205155364 cites W1967511181 @default.
- W3205155364 cites W1991280683 @default.
- W3205155364 cites W1999683261 @default.
- W3205155364 cites W2016448331 @default.
- W3205155364 cites W2024860015 @default.
- W3205155364 cites W2033342037 @default.
- W3205155364 cites W2041142590 @default.
- W3205155364 cites W2067365359 @default.
- W3205155364 cites W2084337547 @default.
- W3205155364 cites W2120469859 @default.
- W3205155364 cites W2124684932 @default.
- W3205155364 cites W2134819724 @default.
- W3205155364 cites W2169974619 @default.
- W3205155364 cites W2316805470 @default.
- W3205155364 cites W2317936876 @default.
- W3205155364 cites W2317985109 @default.
- W3205155364 cites W2326889078 @default.
- W3205155364 cites W2332244817 @default.
- W3205155364 cites W2334429859 @default.
- W3205155364 cites W2465878621 @default.
- W3205155364 cites W2470246762 @default.
- W3205155364 cites W2765485686 @default.
- W3205155364 cites W2783867009 @default.
- W3205155364 cites W2791276036 @default.
- W3205155364 cites W2792901927 @default.
- W3205155364 cites W2793536176 @default.
- W3205155364 cites W2801974292 @default.
- W3205155364 cites W2803427589 @default.
- W3205155364 cites W2805736597 @default.
- W3205155364 cites W2806730363 @default.
- W3205155364 cites W2809461877 @default.
- W3205155364 cites W2810211945 @default.
- W3205155364 cites W2810528429 @default.
- W3205155364 cites W2896223845 @default.
- W3205155364 cites W2904122995 @default.
- W3205155364 cites W2925095313 @default.
- W3205155364 cites W2925545840 @default.
- W3205155364 cites W2947616944 @default.
- W3205155364 cites W2956407240 @default.
- W3205155364 cites W2962524605 @default.
- W3205155364 cites W2977591485 @default.
- W3205155364 cites W2980342106 @default.
- W3205155364 cites W2996213596 @default.
- W3205155364 cites W3006802878 @default.
- W3205155364 cites W3015686492 @default.
- W3205155364 cites W3082773245 @default.
- W3205155364 cites W3084045329 @default.
- W3205155364 cites W3085976529 @default.
- W3205155364 cites W3092042382 @default.
- W3205155364 cites W3127110721 @default.
- W3205155364 cites W3135821207 @default.
- W3205155364 cites W3153784837 @default.
- W3205155364 cites W4229721031 @default.
- W3205155364 cites W4249673822 @default.
- W3205155364 doi "https://doi.org/10.1021/acs.accounts.1c00469" @default.
- W3205155364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34644060" @default.
- W3205155364 hasPublicationYear "2021" @default.
- W3205155364 type Work @default.
- W3205155364 sameAs 3205155364 @default.
- W3205155364 citedByCount "8" @default.
- W3205155364 countsByYear W32051553642022 @default.
- W3205155364 countsByYear W32051553642023 @default.
- W3205155364 crossrefType "journal-article" @default.
- W3205155364 hasAuthorship W3205155364A5038231349 @default.
- W3205155364 hasAuthorship W3205155364A5043033165 @default.
- W3205155364 hasBestOaLocation W32051553642 @default.
- W3205155364 hasConcept C118792377 @default.
- W3205155364 hasConcept C131649739 @default.
- W3205155364 hasConcept C142724271 @default.
- W3205155364 hasConcept C161790260 @default.
- W3205155364 hasConcept C175583648 @default.
- W3205155364 hasConcept C178790620 @default.
- W3205155364 hasConcept C179104552 @default.
- W3205155364 hasConcept C185592680 @default.
- W3205155364 hasConcept C204787440 @default.
- W3205155364 hasConcept C21951064 @default.
- W3205155364 hasConcept C2776910235 @default.
- W3205155364 hasConcept C2779851234 @default.
- W3205155364 hasConcept C41183919 @default.
- W3205155364 hasConcept C544153396 @default.
- W3205155364 hasConcept C55493867 @default.
- W3205155364 hasConcept C7070889 @default.
- W3205155364 hasConcept C71924100 @default.
- W3205155364 hasConcept C75473681 @default.
- W3205155364 hasConceptScore W3205155364C118792377 @default.
- W3205155364 hasConceptScore W3205155364C131649739 @default.
- W3205155364 hasConceptScore W3205155364C142724271 @default.
- W3205155364 hasConceptScore W3205155364C161790260 @default.
- W3205155364 hasConceptScore W3205155364C175583648 @default.
- W3205155364 hasConceptScore W3205155364C178790620 @default.
- W3205155364 hasConceptScore W3205155364C179104552 @default.